【題目】定義在R上的奇函數f(x),當x≥0時,f(x)=,則關于x的函數F(x)=f(x)-
的所有零點之和為______.
【答案】
【解析】
根據分段函數的解析式和奇函數的對稱性作出函數在
上的圖象和
的圖象,利用數形結合的方法求解即可
∵當x≥0時,f(x)=;
即x∈時,f(x)=
x∈[1,3]時,f(x)=x-2∈[-1,1];
x∈(3,+∞)時,f(x)=4-x∈(-∞,-1)
畫出x≥0時f(x)的圖象,
再利用奇函數的對稱性,畫出x<0時f(x)的圖象,如圖所示;
則直線,與y=f(x)的圖象有5個交點,則方程f(x)-
=0共五個實根,
最左邊兩根之和為-6,最右邊兩根之和為6,
∵x∈(-1,0)時,-x∈(0,1),∴f(-x)=
又f(-x)=-f(x),
∴f(x)=-=
∴中間的一個根滿足
即1-x=,解得x=1-
,
∴所有根的和為
故答案為:
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(x∈(-1,1)),有下列結論:
(1)x∈(-1,1),等式f(-x)+f(x)=0恒成立;
(2)m∈[0,+∞),方程|f(x)|=m有兩個不等實數根;
(3)x1,x2∈(-1,1),若x1≠x2,則一定有f(x1)≠f(x2);
(4)存在無數多個實數k,使得函數g(x)=f(x)-kx在(-1,1)上有三個零點
則其中正確結論的序號為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正項等比數列{an}的前n項和為Sn , 且S2=6,S4=30,n∈N* , 數列{bn}滿足bnbn+1=an , b1=1
(1)求an , bn;
(2)求數列{bn}的前n項和為Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,C是以AB為直徑的圓O上異于A,B的點,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F 分別是PC,PB的中點,記平面AEF與平面ABC的交線為直線l.
(Ⅰ)求證:直線l⊥平面PAC;
(Ⅱ)直線l上是否存在點Q,使直線PQ分別與平面AEF、直線EF所成的角互余?若存在,求出|AQ|的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的奇數項成等差數列,偶數項成等比數列,且公差和公比都是2,若對滿足m+n≤5的任意正整數m,n,均有am+an=am+n成立. (I)求數列{an}的通項公式;
(II)若bn= ,求數列{bn}的前n項和Tn .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com