精英家教網 > 高中數學 > 題目詳情
今有一長2米寬1米的矩形鐵皮,如圖,在四個角上分別截去一個邊長為x米的正方形后,沿虛線折起,做成一個無蓋的長方體形水箱(接口連接問題不考慮).

(Ⅰ)求水箱容積的表達式f(x),并指出函數f(x)的定義域;

(Ⅱ)若要使水箱容積不大于4x3立方米的同時,又使得底面積最大,求x的值.

答案:解:(Ⅰ)由已知該長方體形水箱高為x米,底面矩形長為(2-2x)米,寬(1-2x)米.

∴該水箱容積為f(x)=(2-2x)(1-2x)x=4x3-6x2+2x.

其中正數x滿足    ∴0<x<

∴所求函數f(x)的定義域為{x|0<x<}. 

(Ⅱ)由f(x)≤4x3,得x≤0或x≥

∵函數f(x)的定義域為{|0<x<},

≤x<

此時底面積為S(x)=(2-2x)(1-2x)=4x2-6x+2

x∈[,). 

由S(x)=4(x-)2-,可知S(x)在[)上是減函數,

∴x=. 

答:滿足條件的x為米.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

今有一長2米寬1米的矩形鐵皮,如圖,在四個角上分別截去一個邊長為x米的正方形后,沿虛線折起可做成一個無蓋的長方體形水箱(接口連接問題不考慮).
(Ⅰ)求水箱容積的表達式f(x),并指出函數f(x)的定義域;
(Ⅱ)若要使水箱容積不大于4x3立方米的同時,又使得底面積最大,求x的值.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三上學期期中考試文科數學試卷(解析版) 題型:解答題

本小題滿分12分)

今有一長2米寬1米的矩形鐵皮,如圖,在四個角上分別截去一個邊長為x米的正方形后,沿虛線折起可做成一個無蓋的長方體形水箱(接口連接問題不考慮).

(Ⅰ)求水箱容積的表達式,并指出函數的定義域;

(Ⅱ)若要使水箱容積不大于立方米的同時,又使得底面積最大,求x的值.

 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

今有一長2米寬1米的矩形鐵皮,如圖,在四個角上分別截去一個邊長為x米的正方形后,沿虛線折起可做成一個無蓋的長方體形水箱(接口連接問題不考慮).
(Ⅰ)求水箱容積的表達式f(x),并指出函數f(x)的定義域;
(Ⅱ)若要使水箱容積不大于4x3立方米的同時,又使得底面積最大,求x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

今有一長2米寬1米的矩形鐵皮,如圖,在四個角上分別截去一個邊長為x米的正方形后,沿虛線折起,做成一個無蓋的長方體形水箱(按口連接問題不考慮)。

(I)求水箱容積的表達式,并指出函數的定義域;

(II)若要使水箱容積不大于立方米的同時,又使得底面積最大,求x的值。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视