設等差數列的首項為a,公差為d ( d>0 ). 數列
定義如下:對于正整數m,
是使不等式
成立的所有n中的最大值.(例如:b1是使不等式
成立的所有n中的最大值,b2是使不等式
成立的所有n中的最大值,……,如此類推).
(1)若,
求
;
(2)若,求數列
前2m項的和;
(3)是否存在等差數列,使得
,若存在,求a和d的范圍;
若不存在,請說明理由.
(1)當m=5時,由,解得
,則n的最大整數為10,
所以 =10 . ……………………2分
(2)由,解得
.
當m為奇數時,n的最大整數為;
當m為偶數時,n的最大整數為, 所以
. …………………5分
==
. …………………………………………8分
(3))假設存在等差數列,使得
。由
,解得
。因
是使不等式
成立的所有n中的最大值,故
對任意正整數m都成立,變形整理可得
(★)對任意正整數m都成立. …………………………11分
當1-3d=0即d=時,要使(★)對任意正整數m都成立,還需
成立,即
,故當d=
,
時,滿足題意,所以存在等差數列
;
②當1-3d>0即0<d<時, 不等式(★)變為
,因
均為確定的實數,所以m為一定范圍內的整數,不是所有的正整數,故(★)不等式不是對任意正整數m都成立;
③當1-3d<0即d>時, 不等式(★)變為
,因
均為確定的實數,所以m為一定范圍內的整數,不是所有的正整數,故(★)不等式不是對任意正整數m都成立。
綜合上述:存在等差數列滿足題意,此時d=
,
. …………………16分
科目:高中數學 來源: 題型:單選題
查看答案和解析>>
科目:高中數學 來源:不詳 題型:單選題
A.a>0,d>0 | B.a>0,d<0 | C.a<0,d>0 | D.a<0,d<0 |
查看答案和解析>>
科目:高中數學 來源:2009-2010學年重慶十一中高一(上)數學單元測試10(集合到等比數列)(解析版) 題型:選擇題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com