【題目】已知橢圓和拋物線
有公共焦點
,
的中心和
的頂點都在坐標原點,過點
的直線
與拋物線
分別相交于
兩點(其中點
在第四象限內).
(1)若,求直線
的方程;
(2)若坐標原點關于直線
的對稱點
在拋物線
上,直線
與橢圓
有公共點,求橢圓
的長軸長的最小值.
科目:高中數學 來源: 題型:
【題目】已知橢圓(
是大于
的常數)的左、右頂點分別為
、
,點
是橢圓上位于
軸上方的動點,直線
、
與直線
分別交于
、
兩點(設直線
的斜率為正數).
(Ⅰ)設直線、
的斜率分別為
,
,求證
為定值.
(Ⅱ)求線段的長度的最小值.
(Ⅲ)判斷“”是“存在點
,使得
是等邊三角形”的什么條件?(直接寫出結果)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校高一年級學生某次身體素質體能測試的原始成績采用百分制,已知所有這些學生的原始成績均分布在內,發布成績使用等級制各等級劃分標準見下表,規定:
、
、
三級為合格等級,
為不合格等級.
百分制 |
|
|
|
|
等級 |
為了解該校高一年級學生身體素質情況,從中抽取了名學生的原始成績作為樣本進行統計,按照
的分組作出頻率分布直方圖如圖
所示,樣本中分數在
分及以上的所有數據的莖葉圖如圖
所示.
(1)求和頻率分布直方圖中的
的值;
(2)根據樣本估計總體的思想,以事件發生的頻率作為相應事件發生的概率,若在該校高一學生任選人,求至少有
人成績是合格等級的概率;
(3)在選取的樣本中,從、
兩個等級的學生中隨機抽取了
名學生進行調研,記
表示所抽取的
名學生中為
等級的學生人數,求隨機變量
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}是等差數列,Sn為{an}的前n項和,且a10=19,S10=100;數列{bn}對任意n∈N* , 總有b1b2b3…bn﹣1bn=an+2成立.
(1)求數列{an}和{bn}的通項公式;
(2)記cn=(﹣1)n ,求數列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于函數f(x)=4sin(2x+ )(x∈R),有下列命題:
①y=f(x)的表達式可改寫為y=4cos(2x﹣ );
②y=f(x)是以2π為最小正周期的周期函數;
③y=f(x)的圖象關于點 對稱;
④y=f(x)的圖象關于直線x=﹣ 對稱.
其中正確的命題的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,一動圓與直線
相切且與圓
外切.
(1)求動圓圓心的軌跡
的方程;
(2)若經過定點的直線
與曲線
交于
兩點,
是線段
的中點,過
作
軸的平行線與曲線
相交于點
,試問是否存在直線
,使得
,若存在,求出直線
的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的公差不為零,a1=25,且a1 , a11 , a13成等比數列.
(1)求{an}的通項公式;
(2)求a1+a4+a7+…+a3n﹣2 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值及f(x)的表達式.
(2)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com