精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓和拋物線有公共焦點, 的中心和的頂點都在坐標原點,過點的直線與拋物線分別相交于兩點(其中點在第四象限內).

(1)若,求直線的方程;

(2)若坐標原點關于直線的對稱點在拋物線上,直線與橢圓有公共點,求橢圓的長軸長的最小值.

【答案】(1)(2)

【解析】試題分析:

(1)利用題意設直線的方程為.設出點的坐標可求得 .則直線的方程為.

(2)由題意可得直線的斜率存在,設出直線方程,由對稱性聯立直線與拋物線的方程可得橢圓的長軸長的最小值為

試題解析:

解:(1)解法一:由題意得拋物線方程為.

設直線的方程為.

, ,其中. 由,得.

聯立,可得,,解得,,

.

直線的方程為.

(2)設,直線, 在拋物線上,

直線的斜率存在,

關于直線對稱,所以.解得.

代入拋物線,可得, .

直線的方程為.

設橢圓為. 聯立直線和橢圓,消去整理得

,解得.

,即.橢圓的長軸長的最小值為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓是大于的常數)的左、右頂點分別為、,點是橢圓上位于軸上方的動點,直線與直線分別交于、兩點(設直線的斜率為正數).

Ⅰ)設直線、的斜率分別為, ,求證為定值.

Ⅱ)求線段的長度的最小值.

Ⅲ)判斷存在點,使得是等邊三角形的什么條件?(直接寫出結果)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校高一年級學生某次身體素質體能測試的原始成績采用百分制,已知所有這些學生的原始成績均分布在,發布成績使用等級制各等級劃分標準見下表,規定: 、、三級為合格等級, 為不合格等級.

百分制

分及以上

分到

分到

分以下

等級





為了解該校高一年級學生身體素質情況,從中抽取了名學生的原始成績作為樣本進行統計,按照的分組作出頻率分布直方圖如圖所示,樣本中分數在分及以上的所有數據的莖葉圖如圖所示.

1)求和頻率分布直方圖中的的值;

2)根據樣本估計總體的思想,以事件發生的頻率作為相應事件發生的概率,若在該校高一學生任選,求至少有人成績是合格等級的概率;

3)在選取的樣本中,、兩個等級的學生中隨機抽取了名學生進行調研,表示所抽取的名學生中為等級的學生人數,求隨機變量的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}是等差數列,Sn為{an}的前n項和,且a10=19,S10=100;數列{bn}對任意n∈N* , 總有b1b2b3…bn1bn=an+2成立.
(1)求數列{an}和{bn}的通項公式;
(2)記cn=(﹣1)n ,求數列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】關于函數f(x)=4sin(2x+ )(x∈R),有下列命題:
①y=f(x)的表達式可改寫為y=4cos(2x﹣ );
②y=f(x)是以2π為最小正周期的周期函數;
③y=f(x)的圖象關于點 對稱;
④y=f(x)的圖象關于直線x=﹣ 對稱.
其中正確的命題的序號是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓,一動圓與直線相切且與圓外切.

(1)求動圓圓心的軌跡的方程;

(2)若經過定點的直線與曲線交于兩點, 是線段的中點,過軸的平行線與曲線相交于點,試問是否存在直線,使得,若存在,求出直線的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}的公差不為零,a1=25,且a1 , a11 , a13成等比數列.
(1)求{an}的通項公式;
(2)求a1+a4+a7+…+a3n2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知0<α< <β<π,tan ,cos(β﹣α)=
(1)求sinα的值;
(2)求sinβ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值及f(x)的表達式.
(2)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视