精英家教網 > 高中數學 > 題目詳情

【題目】把一副三角板ABC與ABD擺成如圖所示的直二面角D﹣AB﹣C,(其中BD=2AD,BC=AC)則異面直線DC,AB所成角的正切值為(

A.
B.
C.
D.

【答案】D
【解析】解:以A為原點,AB、AD所在直線分別為y軸和x軸,建立如圖坐標系,
Rt△ABD中,AD:AB:BD=1: :2,
Rt△ABC中,AC:AB:BC=1: :1,
設AD= ,則AB= ,BC=AC= ,
則A(0,0,0),B(0,﹣ ,0),C( ,﹣ ,0),D(0,0, ),
=(0,﹣ ,0), =( ,﹣ ,﹣ ),
設異面直線DC,AB所成角為θ,
則cosθ= = = ,
∴sinθ= = ,
∴異面直線DC,AB所成角的正切值tanθ= =
故選:D.

【考點精析】關于本題考查的異面直線及其所成的角,需要了解異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發現兩條異面直線間的關系才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某班20名同學某次數學測試的成績可繪制成如圖莖葉圖.由于其中部分數據缺失,故打算根據莖葉圖中的數據估計全班同學的平均成績.

(1)完成頻率分布直方圖;

(2)根據(1)中的頻率分布直方圖估計全班同學的平均成績(同一組中的數據用改組區間的中點值作代表);

(3)根據莖葉圖計算出的全班的平均成績為,并假設,且取得每一個可能值的機會相等,在(2)的條件下,求概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在某校舉行的一次數學競賽中,全體參賽學生的競賽成績X近似服從正態分布N(70,100).已知成績在90分以上(含90分)的學生有16名.

(1)試問此次參賽的學生總數約為多少人?

(2)若該校計劃獎勵競賽成績在80分以上(含80分)的學生,試問此次競賽獲獎勵的學生約為多少人?

附:P(|X-μ|<σ)=0.683,P(|X-μ|<2σ)=0.954,P(|X-μ|<3σ)=0.997

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐中, 平面, , , .

1)證明

2)求二面角的余弦值;

3)設點為線段上一點,且直線平面所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,
(Ⅰ) 證明f(x)在[1,+∞)上是增函數;
(Ⅱ) 求f(x)在[1,4]上的最大值及最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】正三棱錐V﹣ABC的底面邊長為2,E,F,G,H分別是VA,VB,BC,AC的中點,則四邊形EFGH的面積的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是定義在上的奇函數,且當時, ,則對任意,函數的零點個數至多有( )

A. 3個 B. 4個 C. 6個 D. 9個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】求滿足下列各條件的橢圓的標準方程.
(1)長軸長是短軸長的2倍且經過點A(2,0);
(2)短軸一個端點與兩焦點組成一個正三角形,且焦點到同側頂點的距離為.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,S是B1D1的中點,E,F,G分別是BC,CD和SC的中點.求證:

(1)直線EG∥平面BDD1B1;
(2)平面EFG∥平面BDD1B1

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视