精英家教網 > 高中數學 > 題目詳情

解答題

已知f(x)是定義在實數集R上的增函數,設F(x)=f(x)―f(a―x).

(1)

求證:F(x)在R上是增函數;

(2)

求F的值,并證明y=F(x)的圖象關于點中心對稱;

(3)

若對任意x、y∈R,滿足F(x+y)+F(x-y)=2F(x)F(y),求證對任意x∈R,總有F(x+a)=-F(x)

答案:
解析:

(1)

證明:設x1,x2∈R,且x1<x2

則F(x1)-F(x2)=[f(x1)-f(a-x1)]-[f(x2)-f(a-x2)]

=[f(x1)-f(x2)]+[f(a-x2)-f(a-x1)]…………2分

∵f(x)在R上是增函數

∴f(x1)-f(x2)<0

由(x1)<f(x2)知:a―x2<a―x1

∴f(a-x2)<f(a-x1)

∴F(x1)-F(x2)<0即F(x1)<F(x2)

∴F(x)在R上是增函數…………5分

(2)

解:由已知得:F=f(a)―f=0…………6分

設P(x,y)為F(x)的圖象上任意點

則P(x,y)關于點成中心對稱點P′為(a―x,―y)…………7分

∵F(a-x)=f(a―x)―f[a―(a―x)]=f(a―x)―f(x)

=―[f(x)―f(a―x)]=-F(x)…………9分

∴F(x)的圖象關于點成中心對稱…………10分

(3)

證明:用,分別代入F(x+y)+F(x―y)=2F(x)F(y)

得:……12分

由⑵知f=0

∴F(x+a)+F(x)=0

∴F(x+a)=-F(x)…………14分


練習冊系列答案
相關習題

科目:高中數學 來源:成功之路·突破重點線·數學(學生用書) 題型:044

已知f(x)=·tan(x-nπ).cot(+x)(n∈Z),求f().

查看答案和解析>>

科目:高中數學 來源:成功之路·突破重點線·數學(學生用書) 題型:044

已知f(x)=loga(sin2-sin4),(a>0且a≠1),確定函數的奇偶性、單調性.

查看答案和解析>>

科目:高中數學 來源:2004全國各省市高考模擬試題匯編(天利38套)·數學 題型:044

已知f(x)=logax,|f(x)|的圖像如圖所示,解不等式f(x2-1)>f(x+a).

查看答案和解析>>

科目:高中數學 來源:2004全國各省市高考模擬試題匯編(天利38套)·數學 題型:044

已知f(x)是定義在[-1,1]上的函數.當a,b∈[-1,1],且a+b≠0時,有>0.

(Ⅰ)判斷函數f(x)的單調性,并給以證明;

(Ⅱ)(理)若f(1)=1且f(x)≤m2-2bm+1對所有x∈[-1,1],b∈[-1,1]恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:廣東省高州一中2007屆高三級數學(理科)(期中)考試題 題型:044

解答題

已知f(x)=,

(1)

,求t的取值范圍;

(2)

若a>0時,f(x)<0恒成立,試求a的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视