精英家教網 > 高中數學 > 題目詳情

【題目】12分)已知等差數列{an}中,a1=1,a3=﹣3

)求數列{an}的通項公式;

)若數列{an}的前k項和Sk=﹣35,求k的值.

【答案】an=1+n﹣1×﹣2=3﹣2nk=7

【解析】試題(I)設出等差數列的公差為d,然后根據首項為1和第3項等于﹣3,利用等差數列的通項公式即可得到關于d的方程,求出方程的解即可得到公差d的值,根據首項和公差寫出數列的通項公式即可;

II)根據等差數列的通項公式,由首項和公差表示出等差數列的前k項和的公式,當其等于﹣35得到關于k的方程,求出方程的解即可得到k的值,根據k為正整數得到滿足題意的k的值.

解:(I)設等差數列{an}的公差為d,則an=a1+n﹣1d

a1=1,a3=﹣3,可得1+2d=﹣3,解得d=﹣2,

從而,an=1+n﹣1×﹣2=3﹣2n

II)由(I)可知an=3﹣2n,

所以Sn==2n﹣n2

進而由Sk=﹣35,可得2k﹣k2=﹣35

k2﹣2k﹣35=0,解得k=7k=﹣5

k∈N+,故k=7為所求.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知遞減等差數列{an}滿足:a1=2,a2a3=40. (Ⅰ)求數列{an}的通項公式及前n項和Sn;
(Ⅱ)若遞減等比數列{bn}滿足:b2=a2 , b4=a4 , 求數列{bn}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在某學校組織的一次籃球總投籃訓練中,規定每人最多投3次;在A處每投進一球得3分,在B處每投進一球得2分,如果前兩次得分之和超過3分即停止投籃,否則投第3次.某同學在A處的命中率q1為0.25,在B處的命中率為q2 . 該同學選擇先在A處投一球,以后都在B處投,用ξ表示該同學投籃的訓練結束后所得的總分,其分布列為

ξ

0

2

3

4

5

P

0.03

P1

P2

P3

P4


(1)求q2的值;
(2)求隨機變量ξ的數學期望Eξ;
(3)試比較該同學選擇在B處投籃得分超過3分與選擇上述方式投籃得分超過3分的概率的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等比數列{an}滿足an+1+an=92n﹣1 , n∈N* . (Ⅰ)求數列{an}的通項公式;
(Ⅱ)設bn=nan , 數列{bn}的前n項和為Sn , 若不等式Sn>kan﹣1對一切n∈N*恒成立,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PB=PD=2,PA=
(Ⅰ)求證:BD⊥PC;
(Ⅱ)若E是PA的中點,求三棱錐P﹣BCE的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】f(x)=x3-3ax2+2bxx=1處有極小值-1.

(1)求a、b的值

(2)求出f(x)的單調區間;

(3)求f(x)的極大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】空中有一氣球,在它的正西方A點測得它的仰角為45°,同時在它南偏東60°B點,測得它的仰角為30°,已知A、B兩點間的距離為107米,這兩個觀測點均離地1米,則測量時氣球離地的距離是_____米.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在某公司舉行的年終慶典活動中,主持人利用隨機抽獎軟件進行抽獎:由電腦隨機生成一張如圖所示的33表格,其中1格設獎300元,4格各設獎200元,其余4格各設獎100元,點擊某一格即顯示相應金額.某人在一張表中隨機不重復地點擊3格,記中獎的總金額為X元.

1)求概率;

2)求的概率分布及數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】己知函數f(x)是定義在R上的偶函數,f(x+1)為奇函數,f(0)=0,當x∈(0,1]時,f(x)=log2x,則在區間(8,9)內滿足方f(x)程f(x)+2=f( )的實數x為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视