【題目】己知函數f(x)=(x+l)lnx﹣ax+a (a為正實數,且為常數)
(1)若f(x)在(0,+∞)上單調遞增,求a的取值范圍;
(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范圍.
【答案】
(1)解:f(x)=(x+l)lnx﹣ax+a,f′(x)=lnx+ +1﹣a,
若f(x)在(0,+∞)上單調遞增,
則a≤lnx+ +1在(0,+∞)恒成立,(a>0),
令g(x)=lnx+ +1,(x>0),
g′(x)= ,
令g′(x)>0,解得:x>1,令g′(x)<0,解得:0<x<1,
故g(x)在(0,1)遞減,在(1,+∞)遞增,
故g(x)min=g(1)=2,
故0<a≤2;
(2)解:若不等式(x﹣1)f(x)≥0恒成立,
即(x﹣1)[(x+1)lnx﹣a]≥0恒成立,
①x≥1時,只需a≤(x+1)lnx恒成立,
令m(x)=(x+1)lnx,(x≥1),
則m′(x)=lnx+ +1,
由(1)得:m′(x)≥2,
故m(x)在[1,+∞)遞增,m(x)≥m(1)=0,
故a≤0,而a為正實數,故a≤0不合題意;
②0<x<1時,只需a≥(x+1)lnx,
令n(x)=(x+1)lnx,(0<x<1),
則n′(x)=lnx+ +1,由(1)n′(x)在(0,1)遞減,
故n′(x)>n(1)=2,
故n(x)在(0,1)遞增,故n(x)<n(1)=0,
故a≥0,而a為正實數,故a>0.
【解析】(1)求出函數f(x)的導數,問題轉化為a≤lnx+ +1在(0,+∞)恒成立,(a>0),令g(x)=lnx+
+1,(x>0),根據函數的單調性求出a的范圍即可;(2)問題轉化為(x﹣1)[(x+1)lnx﹣a]≥0恒成立,通過討論x的范圍,結合函數的單調性求出a的范圍即可.
科目:高中數學 來源: 題型:
【題目】已知函數,則
()函數
定義域為__________.
()函數
導函數為
__________.
()對函數
單調研究如下
____
()設函數
則
函數的最大值為__________.
(5)函數極值點共__________個,(6)其中極小值點有__________個.
(7)若關于的方程
恰有三個不相同的實數解,則
的取值范圍為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,圓心為
,定點
,
為圓
上一點,線段
上一點
滿足
,直線
上一點
,滿足
.
(Ⅰ)求點的軌跡
的方程;
(Ⅱ)為坐標原點,
是以
為直徑的圓,直線
與
相切,并與軌跡
交于不同的兩點
.當
且滿足
時,求
面積
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某山區小學有100名四年級學生,將全體四年級學生隨機按00~99編號,并且按編號順序平均分成10組.現要從中抽取10名學生,各組內抽取的編號按依次增加10進行系統抽樣.
(1)若抽出的一個號碼為22,則此號碼所在的組數是多少?據此寫出所有被抽出學生的號碼;
(2)分別統計這10名學生的數學成績,獲得成績數據的莖葉圖如圖4所示,求該樣本的方差;
(3)在(2)的條件下,從這10名學生中隨機抽取兩名成績不低于73分的學生,求被抽取到的兩名學生的成績之和不小于154分的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若直線和
是異面直線,
在平面
內,
在平面
內,
是平面
與平面
的交線,則下列結論正確的是( )
A. 至少與
,
中的一條相交 B.
與
,
都不相交
C. 與
,
都相交 D.
至多與
,
中的一條相交
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐中,
,
,
,若該三棱錐的四個頂點均在同一球面上,則該球的體積為( )
A. B.
C.
D.
【答案】D
【解析】在三棱錐中,因為
,
,
,所以
,則該幾何體的外接球即為以
為棱長的長方體的外接球,則
,其體積為
;故選D.
點睛:在處理幾何體的外接球問題,往往將所給幾何體與正方體或長方體進行聯系,常用補體法補成正方體或長方體進行處理,本題中由數量關系可證得
從而幾何體的外接球即為以
為棱長的長方體的外接球,也是處理本題的技巧所在.
【題型】單選題
【結束】
21
【題目】已知函數,則
的大致圖象為( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com