【題目】已知向量 =(x,﹣1),
=(x﹣2,3),
=(1﹣2x,6).
(1)若 ⊥(2
+
),求|
|;
(2)若
<0,求x的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知函數是定義在
上的偶函數,且當
時,
.
(1)已畫出函數在
軸左側的圖像,如圖所示,請補出完整函數
的圖像,并根據圖像寫出函數
的增區間;
⑵寫出函數的解析式和值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將兩塊三角板按圖甲方式拼好,其中,
,
,
,現將三角板
沿
折起,使
在平面
上的射影
恰好在
上,如圖乙.
(1)求證: ;
(2)求證: 為線段
中點;
(3)求二面角的大小的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=|x﹣2|﹣|2x+l|.
(I)求不等式f(x)≤x的解集;
(II )若不等式f(x)≥t2﹣t在x∈[﹣2,﹣1]時恒成立,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】銳角△ABC中,角A,B,C所對的邊分別為a,b,c,且acosB+bcosA= csinC.
(1)求cosC;
(2)若a=6,b=8,求邊c的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(
sinx,﹣1),
=(cosx,m),m∈R.
(1)若m= ,且
∥
,求
的值;
(2)已知函數f(x)=2( +
)
﹣2m2﹣1,若函數f(x)在[0,
]上有零點,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數的定義域為
,若存在非零實數
滿足對任意
,均有
,且
,則稱
為
上的
高調函數. 如果定義域為
的函數
是奇函數,當
時,
,且
為
上的8高調函數,那么實數
的取值范圍為____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一個半徑為1的半球材料中截取兩個高度均為的圓柱,其軸截面如圖所示.設兩個圓柱體積之和為
.
(1)求的表達式,并寫出
的取值范圍;
(2)求兩個圓柱體積之和的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com