精英家教網 > 高中數學 > 題目詳情

(本題滿分12分)

設函數滿足:對任意的實數

(Ⅰ)求的解析式;

(Ⅱ)若方程有解,求實數的取值范圍.

 

【答案】

(1)  (2)

【解析】

試題分析:解:⑴

所以                   …………………5分

⑵①當時,不成立.

②當時,

因為函數上單增,所以

③當時,

因為函數上單增,所以

綜上,實數的取值范圍是                   ……………………12分

考點:本試題助于傲世考查了函數解析式以及函數的最值。

點評:解決該試題的關鍵是理解換元法的思想,整體代換得到解析式,同時能將方程有解問題,通過分離變量的方法來運用圖像與圖像的交點問題來得到。而參數的取值范圍即為函數的值域,屬于基礎題。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

( 本題滿分12分 )
已知函數f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分12分)已知數列是首項為,公比的等比數列,,

,數列.

(1)求數列的通項公式;(2)求數列的前n項和Sn.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年上海市金山區高三上學期期末考試數學試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求A、B;

(2) 若,求實數a的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2012-2013學年安徽省高三10月月考理科數學試卷(解析版) 題型:解答題

(本題滿分12分)

設函數為常數),且方程有兩個實根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年重慶市高三第二次月考文科數學 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長為的正方形,,上的點,且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大。

(Ⅲ)求點到平面的距離.

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视