精英家教網 > 高中數學 > 題目詳情

【題目】對實數a和b,定義運算“”:ab= ,設函數f(x)=(x2﹣2)(x﹣x2),x∈R,若函數y=f(x)+c的圖象與x軸恰有兩個公共點,則實數c的取值范圍是

【答案】
【解析】解:∵ ,

∴函數f(x)=(x2﹣2)(x﹣x2)= ,

由圖可知,當﹣c∈ ,

即c∈

函數f(x) 與y=﹣c的圖象有兩個公共點,

∴c的取值范圍是 ,

所以答案是:

【考點精析】解答此題的關鍵在于理解函數的零點與方程根的關系的相關知識,掌握二次函數的零點:(1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在多面體ABCDE中,BC=BA,DE∥BC,AE⊥平面BCDE,BC=2DE,F為AB的中點.

(1)求證:EF∥平面ACD;
(2)若EA=EB=CD,求二面角B﹣AD﹣E的正切值的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設a為實數,函數f(x)=x|x﹣a|.
(1)討論f(x)的奇偶性;
(2)當0≤x≤1時,求f(x)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,常數a>0.
(1)設mn>0,證明:函數f(x)在[m,n]上單調遞增;
(2)設0<m<n且f(x)的定義域和值域都是[m,n],求常數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列函數:①f(x)=3|x| , ②f(x)=x3 , ③f(x)=ln ,④f(x)=x ,⑤f(x)=﹣x2+1中,既是偶函數,又是在區間(0,+∞)上單調遞減函數為 . (寫出符合要求的所有函數的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直三棱柱ABC﹣A1B1C1中,側棱AA1⊥平面ABC.若AB=AC=AA1=1,BC= ,則異面直線A1C與B1C1所成的角為 . .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= +
(1)求函數f(x)的定義域和值域;
(2)設F(x)= [f2(x)﹣2]+f(x)(a為實數),求F(x)在a<0時的最大值g(a);
(3)對(2)中g(a),若﹣m2+2tm+ ≤g(a)對a<0所有的實數a及t∈[﹣1,1]恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=loga(ax﹣1)( a>0,a≠1 )
(1)討論函數f(x)的定義域;
(2)當a>1時,解關于x的不等式:f(x)<f(1);
(3)當a=2時,不等式f(x)﹣log2(1+2x)>m對任意實數x∈[1,3]恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則它的體積為

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视