與圓,圓
同時外切的動圓圓心的軌跡方程是_____________。
解析試題分析:根據題意可知,設動圓的圓心為P,半徑為r,
而圓(x-3)2+y2=9的圓心為M1(3,0),半徑為3;
圓(x+3)2+y2=1的圓心為M2(-3,0),半徑為1
依題意得|PM1|=3+r,|PM2|=1+r,
則|PM1|-|PM2|=(3+r)-(1+r)=2<|M1M2|,
所以點P的軌跡是雙曲線的右支.
且:a=1,c=3,b2=8
其方程是:,。答案為
考點:本題主要考查了查雙曲線的定義.本題考查的知識點是圓的方程、橢圓的性質及橢圓與直線的關系。
點評:解題的關鍵是根據已知條件中未知圓與已知圓的位置關系,結合“圓的位置關系與半徑及圓心距的關系”,探究出動圓圓心P的軌跡,進而給出動圓圓心P的軌跡方程.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com