【題目】函數f(x)=sin(ωx+ )(ω>0)的圖象與x軸的交點橫坐標構成一個公差為
的等差數列,要得到g(x)=cos(ωx+
)的圖象,可將f(x)的圖象( )
A.向右平移 個單位
B.向左平移 個單位
C.向左平移 個單位
D.向右平移 個單位
【答案】B
【解析】解:根據函數f(x)=sin(ωx+ )(ω>0)的圖象與x軸的交點的橫坐標構成一個公差為
的等差數列,可得函數的周期為π, 即:
=π,可得:ω=2,
可得:f(x)=sin(2x+ ).
再由函數g(x)=cos(2x+ )=sin[
﹣(2x+
)]=sin[2(x+
)+
],
故把f(x)=sin(2x+ ) 的圖象向左平移
個單位,可得函數g(x)=cos(2x+
)的圖象,
故選:B.
【考點精析】認真審題,首先需要了解函數y=Asin(ωx+φ)的圖象變換(圖象上所有點向左(右)平移個單位長度,得到函數
的圖象;再將函數
的圖象上所有點的橫坐標伸長(縮短)到原來的
倍(縱坐標不變),得到函數
的圖象;再將函數
的圖象上所有點的縱坐標伸長(縮短)到原來的
倍(橫坐標不變),得到函數
的圖象).
科目:高中數學 來源: 題型:
【題目】橢圓C: +
=1(a>b>0)的離心率為
,過左焦點任作直線l,交橢圓的上半部分于點M,當l的斜率為
時,|FM|=
.
(1)求橢圓C的方程;
(2)橢圓C上兩點A,B關于直線l對稱,求△AOB面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2 sin(ax﹣
)cos(ax﹣
)+2cos2(ax﹣
)(a>0),且函數的最小正周期為
.
(Ⅰ)求a的值;
(Ⅱ)求f(x)在[0, ]上的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】閩越水鎮是閩侯縣打造閩都水鄉文化特色小鎮核心區,該小鎮有一塊1800平方米的矩形地塊,開發商準備在中間挖出三個矩形池塘養閩侯特色金魚,挖出的泥土堆在池塘四周形成基圍(陰影部分所示)種植柳樹,形成柳中觀魚特色景觀.假設池塘周圍的基圍寬均為2米,如圖,設池塘所占的總面積為平方米.
(1)試用表示a及
;
(2)當取何值時,才能使得
最大?并求出
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數f(x)=|x﹣ |+|x+2a|(a∈R,且a≠0)
(Ⅰ)當a=﹣1時,求不等式f(x)≥5的解集;
(Ⅱ)證明:f(x)≥2 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=8lnx+15x﹣x2 , 數列{an}滿足an=f(n),n∈N+ , 數列{an}的前n項和Sn最大時,n=( )
A.15
B.16
C.17
D.18
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)= ,若方程f(f(x))=a(a>0)恰有兩個不相等的實根x1 , x2 , 則e
e
的最大值為( )
A.
B.2(ln2﹣1)
C.
D.ln2﹣1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-5:不等式選講]
設函數f(x)=|2x+2|﹣|x﹣2|.
(Ⅰ)求不等式f(x)>2的解集;
(Ⅱ)若x∈R,f(x)≥t2﹣ t恒成立,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xln(x+1)+( ﹣a)x+2﹣a,a∈R.
(I)當x>0時,求函數g(x)=f(x)+ln(x+1)+ x的單調區間;
(Ⅱ)當a∈Z時,若存在x≥0,使不等式f(x)<0成立,求a的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com