在四棱錐中,
,
,
面
,
為
的中點,
.
(1)求證:;
(2)求證:面
;
(3)求三棱錐的體積
.
科目:高中數學 來源: 題型:解答題
如圖,四棱柱中,
平面
.
(Ⅰ)從下列①②③三個條件中選擇一個做為的充分條件,并給予證明;
①,②
;③
是平行四邊形.
(Ⅱ)設四棱柱的所有棱長都為1,且
為銳角,求平面
與平面
所成銳二面角
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,平面四邊形的4個頂點都在球
的表面上,
為球
的直徑,
為球面上一點,且
平面
,
,點
為
的中點.
(1) 證明:平面平面
;
(2) 求點到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
正方形的邊長為2,
分別為邊
的中點,
是線段
的中點,如圖,把正方形沿
折起,設
.
(1)求證:無論取何值,
與
不可能垂直;
(2)設二面角的大小為
,當
時,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖1,在等腰梯形CDEF中,CB、DA是梯形的高,,
,現將梯形沿CB、DA折起,使
且
,得一簡單組合體
如圖2示,已知
分別為
的中點.
圖1 圖2
(1)求證:平面
;
(2)求證: ;
(3)當多長時,平面
與平面
所成的銳二面角為
?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖1,在等腰直角三角形中,
,
,
分別是
上的點,
,
為
的中點.將
沿
折起,得到如圖2所示的四棱錐
,其中
.
(Ⅰ) 證明:平面
;
(Ⅱ) 求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)證明:在線段BC1存在點D,使得AD⊥A1B,并求的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com