精英家教網 > 高中數學 > 題目詳情

(理科題)(本小題12分)
某房產開發商投資81萬元建一座寫字樓,第一年裝修費為1萬元,以后每年增加2萬元,把寫字樓出租,每年收入租金30萬元。
(1)若扣除投資和各種裝修費,則從第幾年開始獲取純利潤?
(2)若干年后開發商為了投資其他項目,有兩種處理方案①年平均利潤最大時以46萬元出售該樓;
②純利潤總和最大時,以10萬元出售樓,問選擇哪種方案盈利更多?

(1)從第4年開始獲取純利潤。
(2)兩種方案獲利一樣多,而方案(1)時間比較短,所以選擇方案(1)。

解析試題分析:(1)設第n年獲取利潤為y萬元,n年共收入租金30n萬元.付出裝修費共 ,付出投資81萬元,由此可知利潤y=30n-(81+n2),由y>0能求出從第幾年開始獲取純利潤.
(2)①純利潤總和最大時,以10萬元出售,利用二次函數的性質求出最大利潤,方案②利用基本不等式進行求解,當兩種方案獲利一樣多,就看時間哪個方案短就選擇哪個..
(1)設第年獲取利潤為萬元!1分
年共收租金30萬元,付出裝修費構成一個以1為首項,2為公差的等差數列,
…………………2分
因此利潤……………4分
解得……………5分
所以從第4年開始獲取純利潤。………………6分
(2)年平均利潤………………8分
………………9分
(當且僅當)所以9年后共獲利潤:154萬元。……………10分
利潤
所以15年后共獲利潤:144+10=154萬元……………………11分
兩種方案獲利一樣多,而方案(1)時間比較短,所以選擇方案(1)!12分
考點:函數的模型及其應用。
點評:本題是函數模型選取問題,在直接比較不能湊效的前提下可考慮作差法比較.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數 定義在上,對于任意實數,恒有,且當時,
(1)求證:,且當時,
(2)求上的單調性.
(3)設集合,,且,
求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分16分)    本題請注意換算單位
某開發商用9000萬元在市區購買一塊土地建一幢寫字樓,規劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費用為每平方米4000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加100元。
(1)若該寫字樓共x層,總開發費用為y萬元,求函數y=f(x)的表達式;
(總開發費用=總建筑費用+購地費用)
(2)要使整幢寫字樓每平方米開發費用最低,該寫字樓應建為多少層?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)美國華爾街的次貸危機引起的金融風暴席卷全球,低迷的市場造成產品銷售越來越難,為此某廠家舉行大型的促銷活動,經測算該產品的銷售量P萬件(生產量與銷售量相等)與促銷費用萬元滿足,已知生產該產品還需投入成本萬元(不含促銷費用),產品的銷售價格定為元/萬件.
(Ⅰ)將該產品的利潤萬元表示為促銷費用萬元的函數;
(Ⅱ)促銷費用投入多少萬元時,廠家的利潤最大。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(12分)某車間生產一種儀器的固定成本是10000元,每生產一臺該儀器需要增加投入100
元,已知總收入滿足函數:,其中是儀器的月產量.
(1)將利潤表示為月產量的函數(用表示);
(2)當月產量為何值時,車間所獲利潤最大?最大利潤是多少元?(總收入=總成本+利潤)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題12分)
某市居民生活用水收費標準如下:

用水量(噸)
 
每噸收費標準(元)
 
不超過噸部分
 

 
超過噸不超過噸部分
 
3
 
超過噸部分
 

 
已知某用戶一月份用水量為噸,繳納的水費為元;二月份用水量為噸,繳納的水費為元.設某用戶月用水量為噸,交納的水費為元.
(1)寫出關于的函數關系式;
(2)若某用戶希望三月份繳納的水費不超過元,求該用戶三月份最多可以用多少噸水?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)
美國華爾街的次貸危機引起的金融風暴席卷全球,低迷的市場造成產品銷售越來越難,為此某廠家舉行大型的促銷活動,經測算該產品的銷售量P萬件(生產量與銷售量相等)與促銷費用萬元滿足,已知生產該產品還需投入成本萬元(不含促銷費用),每件產品的銷售價格定為元.
(Ⅰ)將該產品的利潤萬元表示為促銷費用萬元的函數(利潤=總售價-成本-促銷費);
(Ⅱ)促銷費用投入多少萬元時,廠家的利潤最大.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(1)求+的值,
(2):已知,且.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)
(1)已知二次函數,求的單調遞減區間。
(2)在區間上單調遞減,求實數的取值范圍。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视