【題目】在平面直角坐標系中,已知橢圓C:
(
>
>0)的右焦點為F(1,0),且過點(1,
),過點F且不與
軸重合的直線
與橢圓C交于A,B兩點,點P在橢圓上,且滿足
.
(1)求橢圓C的標準方程;
(2)若,求直線AB的方程.
科目:高中數學 來源: 題型:
【題目】圖1是由正方形,直角梯形
,三角形
組成的一個平面圖形,其中
,
,將其沿
,
折起使得
與
重合,連接
,如圖2.
(1)證明:圖2中的,
,
,
四點共面,且平面
平面
;
(2)求圖2中的點到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,平面ABCD,底面ABCD是等腰梯形,
,
.
(1)證明:平面PAC;
(2)若,
,設
,且
,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】分別為菱形
的邊
的中點,將菱形沿對角線
折起,使點
不在平面
內,則在翻折過程中,以下命題正確的是___________.(寫出所有正確命題的序號)
①平面
;②異面直線
與
所成的角為定值;③在二面角
逐漸漸變小的過程中,三棱錐
的外接球半徑先變小后變大;④若存在某個位程,使得直線
與直線
垂直,則
的取值范圍是
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(0,2),動點M到點A的距離比動點M到直線y=﹣1的距離大1,動點M的軌跡為曲線C.
(1)求曲線C的方程;
(2)Q為直線y=﹣1上的動點,過Q做曲線C的切線,切點分別為D、E,求△QDE的面積S的最小值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中
.
(Ⅰ)當時,求函數
在點
處的切線方程;
(Ⅱ)設函數的導函數是
,若不等式
對于任意的實數
恒成立,求實數
的取值范圍;
(Ⅲ)設函數,
是函數
的導函數,若函數
存在兩個極值點
,
,且
,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】欲設計如圖所示的平面圖形,它由上、下兩部分組成,其中上部分是弓形(圓心為,半徑為
,
,
),下部分是矩形
.
(1)若,求該平面圖形的周長的最大值;
(2)若,試確定
的值,使得該平面圖形的面積最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知矩形所在平面垂直于直角梯形
所在平面,平面
平面
,且
,且
.
(1)設點為棱
中點,在面
內是否存在點
,使得
平面
?若存在,請證明,若不存在,說明理由;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從2011年到2018年參加“北約”,“華約”考試而獲得加分的學生(每位學生只能參加“北約”,“華約”一種考試)人數可以通過以下表格反映出來.(為了方便計算,將2011年編號為1,2012年編號為2,依此類推……)
年份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
人數y | 2 | 3 | 4 | 4 | 7 | 7 | 6 | 6 |
(1)據悉,該校2018年獲得加分的6位同學中,有1位獲得加20分,2位獲得加15分,3位獲得加10分,從該6位同學中任取兩位,記該兩位同學獲得的加分之和為X,求X的分布列及期望.
(2)根據最近五年的數據,利用最小二乘法求出y與x之間的線性回歸方程,并用以預測該校2019年參加“北約”,“華約”考試而獲得加分的學生人數.(結果要求四舍五入至個位)
參考公式:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com