已知頂點為原點的拋物線
的焦點
與橢圓
的右焦點重合,
與
在第一和第四象限的交點分別為
.
(1)若是邊長為
的正三角形,求拋物線
的方程;
(2)若,求橢圓
的離心率
.
(1)拋物線的方程為
;(2)橢圓
的離心率
.
解析試題分析:(1)先根據拋物線及橢圓的幾何性質得到點關于
軸對稱,進而由
求得
點的坐標
,接著代入拋物線的方程可求得
的值,從而可確定拋物線
的方程;(2)先根據
確定
的橫坐標為
,進而代入橢圓的方程可確定
點的坐標
,再將該點的坐標代入拋物線
,從中可得關系式
,另一方面
,從而得到
,即
,只須求解關于
的方程即可得到
內的解.
試題解析:(1)設橢圓的右焦點為,依題意得拋物線的方程為
∵是邊長為
的正三角形,∴點
的坐標是
代入拋物線的方程解得
,故所求拋物線
的方程為
(2)∵,∴點
的橫坐標是
代入橢圓方程解得
,即點
的坐標是
∵點在拋物線
上,∴
即
將代入上式整理得:
即,解得
∵,故所求橢圓
的離心率
.
考點:1.橢圓的標準方程及其幾何性質;2.拋物線的標準方程及其幾何性質.
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,已知點A(0,-1),B點在直線y = -3上,M點滿足,
,M點的軌跡為曲線C。
(1)求C的方程;
(2)P為C上的動點,l為C在P點處得切線,求O點到l距離的最小值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知,
,
,
分別是橢圓
的四個頂點,△
是一個邊長為2的等邊三角形,其外接圓為圓
.
(1)求橢圓及圓
的方程;
(2)若點是圓
劣弧
上一動點(點
異于端點
,
),直線
分別交線段
,橢圓
于點
,
,直線
與
交于點
.
(ⅰ)求的最大值;
(ⅱ)試問:..,
兩點的橫坐標之和是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率
,且直線
是拋物線
的一條切線.
(1)求橢圓的方程;
(2)點P 為橢圓上一點,直線
,判斷l與橢圓的位置關系并給出理由;
(3)過橢圓上一點P作橢圓的切線交直線于點A,試判斷線段AP為直徑的圓是否恒過定點,若是,求出定點坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點,圓C:
與橢圓E:
有一個公共點
,
分別是橢圓的左、右焦點,直線
與圓C相切.
(1)求m的值與橢圓E的方程;
(2)設Q為橢圓E上的一個動點,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的右焦點為
,短軸的端點分別為
,且
.
(1)求橢圓的方程;
(2)過點且斜率為
的直線
交橢圓于
兩點,弦
的垂直平分線與
軸相交于點
.設弦
的中點為
,試求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓C1:的右焦點為F,P為橢圓上的一個動點.
(1)求線段PF的中點M的軌跡C2的方程;
(2)過點F的直線l與橢圓C1相交于點A、D,與曲線C2順次相交于點B、C,當時,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓,直線
與
相交于
、
兩點,
與
軸、
軸分別相交于
、
兩點,
為坐標原點.
(1)若直線的方程為
,求
外接圓的方程;
(2)判斷是否存在直線,使得
、
是線段
的兩個三等分點,若存在,求出直線
的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com