如圖所示,直三棱柱ABCA1B1C1中,D,E分別是AB,BB1的中點.
(1)證明:BC1∥平面A1CD;
(2)設AA1=AC=CB=2,AB=2,求三棱錐C
A1DE的體積.
科目:高中數學 來源: 題型:解答題
如圖1,在直角梯形中,
,
.把
沿
折起到
的位置,使得
點在平面
上的正投影
恰好落在線段
上,如圖2所示,點
分別為棱
的中點.
(1)求證:平面平面
;
(2)求證:平面
;
(3)若,求四棱錐
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖甲,是邊長為6的等邊三角形,
分別為
靠近
的三等分點,點
為邊
邊的中點,線段
交線段
于點
.將
沿
翻折,使平面
平面
,連接
,形成如圖乙所示的幾何體.
(1)求證:平面
(2)求四棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,矩形所在的平面和平面
互相垂直,等腰梯形
中,
∥
,
=2,
,
,
,
分別為
,
的中點,
為底面
的重心.
(1)求證:平面平面
;
(2)求證: ∥平面
;
(3)求多面體的體積
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖甲,⊙O的直徑AB=2,圓上兩點C、D在直徑AB的兩側,且∠CAB=,∠DAB=
.沿直徑AB折起,使兩個半圓所在的平面互相垂直(如圖乙),F為BC的中點,E為AO的中點.根據圖乙解答下列各題:
(1)求三棱錐C-BOD的體積;
(2)求證:CB⊥DE;
(3)在上是否存在一點G,使得FG∥平面ACD?若存在,試確定點G的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖(1)所示,⊙O的直徑AB=4,點C,D為⊙O上兩點,且∠CAB=45°,∠DAB=60°,F為的中點.沿直徑AB折起,使兩個半圓所在平面互相垂直(如圖(2)所示).
(1)求證:OF∥平面ACD;
(2)在上是否存在點G,使得FG∥平面ACD?若存在,試指出點G的位置,并求點G到平面ACD的距離;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
請您設計一個帳篷,它下部的形狀是高為1m正六棱柱,上部的形狀是側棱長為3m的正六棱錐(如圖所示)。試問當帳篷的頂點O到底面中心O1的距離為多少時,帳篷的體積最大?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com