精英家教網 > 高中數學 > 題目詳情
數列{bn}滿足b1=1,bn+1=2bn+1,若數列{an}滿足a1=1,an=bn(
1
b1
+
1
b2
+…+
1
bn-1
)
(n≥2且n∈N*).
(1)求b2,b3及數列{bn}的通項公式;
(2)試證明:
an+1
an+1
=
bn
bn+1
(n≥2且n∈N*);
(3)求證:(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)…(1+
1
an
)<
10
3
分析:(1)由b1=1,bn+1=2bn+1,分別令n=1和n=2,先求出b2和b3,再由bn+1=2bn+1,利用構造法求出{bn}的通項公式.
(2)由a1=1,an=bn(
1
b1
+
1
b2
+…+
1
bn-1
)
(n≥2且n∈N*),變形得到
an
bn
=
1
b1
+
1
b2
+…+
1
bn-1
,由此能夠證明:
an+1
an+1
=
bn
bn+1
(n≥2且n∈N*).
(3)由(1)知:(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)…(1+
1
an
)
=2(
1
b1
+
1
b2
+
1
b3
+…+
1
bn
),再由
1
b1
+
1
b2
+
1
b3
+…+
1
bn
=1+
1
3
+…+
1
2n-1
,利用放縮法能夠證明(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)…(1+
1
an
)<
10
3
解答:解:(1)∵b1=1,bn+1=2bn+1,
∴b2=2×1+1=3,
b3=2×3+1=7,
∵bn+1=2bn+1,∴bn+1+1=2(bn+1),
bn+1=(b1+1)•2n-1=2•2n-1=2n,
bn=2n-1
(2)∵a1=1,an=bn(
1
b1
+
1
b2
+…+
1
bn-1
)
(n≥2且n∈N*),
an
bn
=
1
b1
+
1
b2
+…+
1
bn-1
,
an+1
bn+1
=
1
b1
+
1
b2
+…+
1
bn-1
+
1
bn
,
an+1
bn+1
-
an
bn
=
1
bn
,
an+1
bn+1
=
an+1
bn
,
an+1
an+1
=
bn
bn+1
(n≥2且n∈N*).
(3)由(2)知(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)…(1+
1
an
)

=
a1+1
a1
×
a2+1
a2
×
a3+1
a3
×…×
an+1
an

=
a1+1
a1a2
×
a2+1
a3
×
a3+1
a4
×…×
an+1
an+1
•an+1

=
2
3
×
b2
b3
×
b3
b4
×…×
bn
bn+1
•an+1
=
2
3
×
b2
bn+1
an+1

=2•
an+1
bn+1

=2(
1
b1
+
1
b2
+
1
b3
+…+
1
bn
),
1
b1
+
1
b2
+
1
b3
+…+
1
bn
=1+
1
3
+…+
1
2n-1
,
當k≥2時,
1
2k-1
=
2k-1-1
(2k-1)(2k+1-1)
2k+1
(2k-1)(2k+1-1)
=2(
1
2k-1
-
1
2k+1-1
),
1+
1
3
+…+
1
2n-1

=1+2[(
1
22-1
-
1
23-1
)+(
1
23-1
-
1
24-1
)+…+(
1
2n-1
-
1
2n+1-1

=1+2(
1
3
-
1
2n+1-1
)<
5
3
點評:本題考查數列的通項公式的求法,考查不等式的證明,考查數列、不等式知識,考查化歸與轉化、分類與整合的數學思想,培養學生的抽象概括能力、推理論證能力、運算求解能力和創新意識.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設等比數列{an}的前n項和Sn,首項a1=1,公比q=f(λ)=
λ
1+λ
(λ≠-1,0)

(Ⅰ)證明:Sn=(1+λ)-λan;
(Ⅱ)若數列{bn}滿足b1=
1
2
,bn=f(bn-1)(n∈N*,n≥2),求數列{bn}的通項公式;
(Ⅲ)若λ=1,記cn=an(
1
bn
-1)
,數列{cn}的前項和為Tn,求證:當n≥2時,2≤Tn<4.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn=n2+n,數列{bn}滿足b1=5,bn+1=2bn-1(n∈N*),cn=
1
anlog2(bn-1)
,設數列{cn}的前n項和為Tn,則Tn
1
2
的大小關系為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an},如果數列{bn}滿足b1=a1 ,bn=an+an-1 (n≥2,n∈N*),則稱數列{bn}是數列{an}的“生成數列”
(1)若數列{an}的通項為an=n,寫出數列{an}的“生成數列”{bn}的通項公式;
(2)若數列{cn}的通項為cn=2n+b,(其中b是常數),試問數列{cn}的“生成數列”{ln}是否是等差數列,請說明理由.
(3)已知數列{dn}的通項為dn=2n+n,設數列{dn}的“生成數列”{pn}的前n項和為Tn,問是否存在自然數m滿足滿足(Tm-2012)(Tm-6260)≤0,若存在請求出m的值,否則請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•綿陽二模)已知數列{an}的前n項和Sn=n2+4n(n∈N*),數列{bn}滿足b1=1,bn+1=2bn+1
(1)求數列{an},{bn}的通項公式;
(2)設cn=
(an-3)•(bn+1)4
,求數列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•許昌一模)等差數列{an}的各項均為正數,a1=1且a3,a6,a10+2成等比數列.
(Ⅰ)求數列{an}的前20項和S20;
(Ⅱ)設數列{bn}滿足b1=1,bn+1=bn+2an,求證bn•bn+2<b
 
2
n+1

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视