精英家教網 > 高中數學 > 題目詳情

【題目】定義,,倒平均數.

1)若數列項的倒平均數,求的通項公式;

2)設數列滿足:當為奇數時,,當為偶數時,.項的倒平均數,求;

3)設函數,對(1)中的數列,是否存在實數,使得當時,對任意恒成立?若存在,求出最大的實數;若不存在,說明理由.

【答案】1;(2;(3)存在,

【解析】

1)根據定義求得數列的前項和.再根據和項與通項關系求出的通項公式.

2)先根據為偶數和為奇數時,分別求出數列的前項和,再根據定義求出,最后求出.

3)先化簡不等式得對任意恒成立,再根據數列單調性求最小值,最后根據不等式解集推導出存在最大的實數

1)設數列的前項和為,

由題意,,

所以.

所以,當時,,

也滿足此式.

所以的通項公式為.

2)設數列的前項和為,則當為偶數時,

為奇數時,.

所以

所以.

3)假設存在實數,使得當時,對任意恒成立,

對任意恒成立,

,因為,

所以數列是遞增數列,

所以只要,即,

解得.

所以存在最大的實數

使得當時,對任意恒成立.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】隨著計算機的出現,圖標被賦予了新的含義,又有了新的用武之地.在計算機應用領域,圖標成了具有明確指代含義的計算機圖形.如圖所示的圖標是一種被稱之為“黑白太陽”的圖標,該圖標共分為3部分.第一部分為外部的八個全等的矩形,每一個矩形的長為3、寬為1;第二部分為圓環部分,大圓半徑為3,小圓半徑為2;第三部分為圓環內部的白色區域.在整個“黑白太陽”圖標中隨機取一點,則此點取自圖標第三部分的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某電子商務平臺的管理員隨機抽取了1000位上網購物者,并對其年齡(在10歲到69歲之間)進行了調查,統計情況如下表所示.

年齡

人數

100

150

200

50

已知,三個年齡段的上網購物的人數依次構成遞減的等比數列.

(1)求的值;

(2)若將年齡在內的上網購物者定義為“消費主力軍”,其他年齡段內的上網購物者定義為“消費潛力軍”.現采用分層抽樣的方式從參與調查的1000位上網購物者中抽取5人,再從這5人中抽取2人,求這2人中至少有一人是消費潛力軍的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設拋物線的焦點為,過點作直線與拋物線交于,兩點,點滿足,過軸的垂線與拋物線交于點,若,則點的橫坐標為____________________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從某地區年齡在25~55歲的人員中,隨機抽出100人,了解他們對今年兩會的熱點問題的看法,繪制出頻率分布直方圖如圖所示,則下列說法正確的是( )

A. 抽出的100人中,年齡在40~45歲的人數大約為20

B. 抽出的100人中,年齡在35~45歲的人數大約為30

C. 抽出的100人中,年齡在40~50歲的人數大約為40

D. 抽出的100人中,年齡在35~50歲的人數大約為50

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的兩個焦點與短軸的一個端點是等邊三角形的三個頂點,且長軸長為4

1)求橢圓的方程;

2)若是橢圓的左頂點,經過左焦點的直線與橢圓交于兩點,求的面積之差的絕對值的最大值,并求取得最大值時直線的方程.為坐標原點)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C:()的短軸長為2,離心率為

(1)求橢圓C的方程

(2)若過點M(2,0)的引斜率為的直線與橢圓C相交于兩點GH,設P為橢圓C上一點,且滿足(O為坐標原點),當時,求實數的取值范圍?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設常數.在平面直角坐標系xOy中,已知點,直線l:,曲線Γ:,).l與x軸交于點A、與Γ交于點B.P、Q分別是曲線Γ與線段AB上的動點.

(1)用t表示點B到點F的距離;

(2)設,,線段OQ的中點在直線FP上,求△AQP的面積;

(3)設,是否存在以FP、FQ為鄰邊的矩形FPEQ,使得點E在Γ上?若存在,求點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線與拋物線有一個公共點.

1)求拋物線方程;

2)斜率不為0的直線經過拋物線的焦點,交拋物線于兩點,.拋物線上是否存在兩點,關于直線對稱?若存在,求出的斜率的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视