【題目】如圖,幾何體EF﹣ABCD中,CDEF為邊長為2的正方形,ABCD為直角梯形,AB∥CD,AD⊥DC,AD=2,AB=4,∠ADF=90°.
(1)求證:AC⊥FB
(2)求二面角E﹣FB﹣C的大。
【答案】
(1)證明:由題意得,AD⊥DC,AD⊥DF,且DC∩DF=D,
∴AD⊥平面CDEF,∴AD⊥FC,
∵四邊形CDEF為正方形.∴DC⊥FC
由DC∩AD=D∴FC⊥平面ABCD,∴FC⊥AC
又∵四邊形ABCD為直角梯形,
AB∥CD,AD⊥DC,AD=2,AB=4
∴ ,
,則有AC2+BC2=AB2
∴AC⊥BC
由BC∩FC=C,∴AC⊥平面FCB,∴AC⊥FB
(2)解:由(1)知AD,DC,DE所在直線相互垂直,
故以D為原點,DA,DC,DE所在直線分別為x,y,z軸,
建立如圖所示的空間直角坐標系,
可得D(0,0,0),F(0,2,2),B(2,4,0),
E(0,0,2),C(0,2,0),A(2,0,0),
由(1)知平面FCB的法向量為 ,
∴ ,
設平面EFB的法向量為 ,
則有:
令z=1則 ,
設二面角E﹣FB﹣C的大小為θ,
,
∵ ,∴
.
【解析】(1)由題意得,AD⊥DC,AD⊥DF,從而AD⊥FC,DC⊥FC,由此能證明AC⊥FB.(2)以D為原點,DA,DC,DE所在直線分別為x,y,z軸,建立空間直角坐標系,利用向量法能求出二面角E﹣FB﹣C的大。
科目:高中數學 來源: 題型:
【題目】如圖方莖葉圖記錄了甲、乙兩組各5名學生在一次英語聽力測試中的成績(單位:分).已知甲組數據的中位數為l5,乙組數據的平均數為16.8,則x+y的值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某老師對全班名學生學習積極性和參加社團活動情況進行調查,統計數據如下所示:
參加社團活動 | 不參加社團活動 | 合計 | |
學習積極性高 | |||
學習積極性一般 | |||
合計 |
(1)請把表格數據補充完整;
(2)若從不參加社團活動的人按照分層抽樣的方法選取
人,再從所選出的
人中隨機選取兩人作為代表發言,求至少有一個學習積極性高的概率;
(3)運用獨立性檢驗的思想方法分析:請你判斷是否有的把握認為學生的學習積極性與參與社團活動由關系?
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知左、右焦點分別為的橢圓
與直線
相交于
兩點,使得四邊形
為面積等于
的矩形.
(1)求橢圓的方程;
(2)過橢圓上一動點
(不在
軸上)作圓
的兩條切線
,切點分別為
,直線
與橢圓
交于
兩點,
為坐標原點,求
的面積
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的各項都是正數,且對任意n∈N* , 都有(an﹣1)(an+3)=4Sn , 其中Sn為數列{an}的前n項和.
(1)求證數列{an}是等差數列;
(2)若數列{ }的前n項和為Tn , 求Tn .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com