精英家教網 > 高中數學 > 題目詳情

(本小題共14分)已知是由滿足下述條件的函數構成的集合:對任意,①方程有實數根;②函數的導數滿足

(Ⅰ)判斷函數是否是集合中的元素,并說明理由;

(Ⅱ)集合中的元素具有下面的性質:若的定義域為,則對于任意,都存在,使得等式成立.試用這一性質證明:方程有且只有一個實數根;

(Ⅲ)對任意,且,求證:對于定義域中任意的,,,當,且時,.

 

【答案】

解:(Ⅰ)因為①當時,

所以方程有實數根0;

,

所以,滿足條件;

由①②,函數是集合中的元素.        …………5分

(Ⅱ)假設方程存在兩個實數根,

,.

不妨設,根據題意存在,

滿足.

因為,,且,所以.

與已知矛盾.又有實數根,

所以方程有且只有一個實數根.                 …………10分

(Ⅲ)當時,結論顯然成立;

,不妨設.

因為,且所以為增函數,那么.

又因為,所以函數為減函數,

所以.

所以,即.

因為,所以,  (1)

又因為,所以, (2)

(1)(2)得.

所以.

綜上,對于任意符合條件的,總有成立.……14分

【解析】本題是一道以集合為背景的創新題,考查函數的性質和不等式的證明?疾閷W生的理解能力和分析能力。讀懂題意是解題的前提,解題是注意分類討論思想的應用。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(08年北京卷文)(本小題共14分)

已知的頂點在橢圓上,在直線上,且

(Ⅰ)當邊通過坐標原點時,求的長及的面積;

(Ⅱ)當,且斜邊的長最大時,求所在直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題共14分)

已知雙曲線的離心率為,右準線方程為

(Ⅰ)求雙曲線的方程;(Ⅱ)設直線是圓上動點處的切線,與雙曲線交于不同的兩點,證明的大小為定值..

查看答案和解析>>

科目:高中數學 來源:2010年北京市宣武區高三第二次模擬考試數學(理) 題型:解答題

(本小題共14分)
已知,動點到定點的距離比到定直線的距離小.
(I)求動點的軌跡的方程;
(Ⅱ)設是軌跡上異于原點的兩個不同點,,求面積的最小值;
(Ⅲ)在軌跡上是否存在兩點關于直線對稱?若存在,求出直線 的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:2011年普通高中招生考試北京市高考理科數學 題型:解答題

((本小題共14分)
已知橢圓.過點(m,0)作圓的切線l交橢圓GAB兩點.
(I)求橢圓G的焦點坐標和離心率;
(II)將表示為m的函數,并求的最大值.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年北京市豐臺區高三下學期統一練習數學理卷 題型:解答題

(本小題共14分)  

已知點,,動點P滿足,記動點P的軌跡為W

(Ⅰ)求W的方程;

(Ⅱ)直線與曲線W交于不同的兩點C,D,若存在點,使得成立,求實數m的取值范圍.

 

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视