精英家教網 > 高中數學 > 題目詳情

【題目】某公司為了對某種商品進行合理定價,需了解該商品的月銷售量(單位:萬件)與月銷售單價(單位:元/件)之間的關系,對近個月的月銷售量和月銷售單價數據進行了統計分析,得到一組檢測數據如表所示:

月銷售單價(元/件)

月銷售量(萬件)

1)若用線性回歸模型擬合之間的關系,現有甲、乙、丙三位實習員工求得回歸直線方程分別為:,,其中有且僅有一位實習員工的計算結果是正確的.請結合統計學的相關知識,判斷哪位實習員工的計算結果是正確的,并說明理由;

2)若用模型擬合之間的關系,可得回歸方程為,經計算該模型和(1)中正確的線性回歸模型的相關指數分別為,請用說明哪個回歸模型的擬合效果更好;

3)已知該商品的月銷售額為(單位:萬元),利用(2)中的結果回答問題:當月銷售單價為何值時,商品的月銷售額預報值最大?(精確到

參考數據:.

【答案】1)甲;(2;(3

【解析】

1)根據數據知負相關,排除乙,計算中心點驗證排除丙得到答案.

2越大,殘差平方和越小,擬合效果越好,,得到答案.

3,求導得到單調區間,得到答案.

1)根據數據知負相關,排除乙.

,.

代入驗證知,丙不滿足,故甲計算正確.

2越大,殘差平方和越小,擬合效果越好,,

故選用更好.

3)根據題意:,故.

,則(舍去)或.

故當時,函數單調遞增,當時,函數單調遞減.

故當時,商品的月銷售額預報值最大.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點到準線的距離為2,直線與拋物線交于不同的兩點.

1)求拋物線的方程;

2)是否存在與的取值無關的定點,使得直線,的斜率之和恒為定值?若存在,求出所有點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四錐中,,底面ABCD為形,,點E為的AD中點.

1)證明:平面平面PBE;

2)若,二面角的余弦值為,且,求PE的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市場研究人員為了了解產業園引進的甲公司前期的經營狀況,對該公司2018年連續六個月的利潤進行了統計,并根據得到的數據繪制了相應的折線圖,如圖所示

(1)由折線圖可以看出,可用線性回歸模型擬合月利潤(單位:百萬元)與月份代碼之間的關系,求關于的線性回歸方程,并預測該公司2019年3月份的利潤;

(2)甲公司新研制了一款產品,需要采購一批新型材料,現有兩種型號的新型材料可供選擇,按規定每種新型材料最多可使用個月,但新材料的不穩定性會導致材料損壞的年限不相同,現對,兩種型號的新型材料對應的產品各件進行科學模擬測試,得到兩種新型材料使用壽命的頻數統計如下表:

使用壽命

材料類型

個月

個月

個月

個月

總計

如果你是甲公司的負責人,你會選擇采購哪款新型材料?

參考數據:,.參考公式:回歸直線方程為,其中 .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠新購置甲、乙兩種設備,分別生產A,B兩種產品,為了解這兩種產品的質量,隨機抽取了200件進行質量檢測,得到質量指標值的頻數統計表如下:

質量指標值

合計

A產品頻數

2

6

a

32

20

10

80

B產品頻數

12

24

b

27

15

6

n

產品質量2×2列聯表

產品質量高

產品質量一般

合計

A產品

B產品

合計

附:

1)求ab,n的值,并估計A產品質量指標值的平均數;

2)若質量指標值大于50,則說明該產品質量高,否則說明該產品質量一般.請根據頻數表完成列聯表,并判斷是否有的把握認為質量高低與引入甲、乙設備有關.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》中將底面為直角三角形且側棱垂直于底面的三棱柱稱為“塹堵”;底面為矩形,一條側棱垂直于底面的四棱錐稱之為“陽馬”;四個面均為直角三角形的四面體稱為“鱉膈”.如圖在塹堵ABC-A1B1C1中,ACBC,且AA1=AB=2.下列說法正確的是(

A.四棱錐B-A1ACC1為“陽馬”

B.四面體A1C1CB為“鱉膈”

C.四棱錐B-A1ACC1體積最大為

D.A點分別作AEA1B于點E,AFA1C于點F,則EFA1B

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義域為R的奇函數,滿足,則下列敘述正確的為(

①存在實數k,使關于x的方程7個不相等的實數根

②當時,恒有

③若當時,的最小值為1,則

④若關于的方程的所有實數根之和為零,則

A.①②③B.①③C.②④D.①②③④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在三棱柱中, , 的中點.

(1)證明: 平面

(2)若,點在平面的射影在上,且側面的面積為,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓過點,且其離心率為,過坐標原點作兩條互相垂直的射線與橢圓分別相交于,兩點.

1)求橢圓的方程;

2)是否存在圓心在原點的定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视