【題目】已知函數.
(1)求函數的極值;
(2)若,
是方程
(
)的兩個不同的實數根,求證:
.
【答案】(1)有極小值
,無極大值.(2)見解析
【解析】試題分析:
(1)求出導函數,再求出
的零點,確定零點兩側
的正負,得極值;
(2)關鍵是參數的轉換,由
是某方程的解,代入得
,兩式相減可解得
,這樣要證的不等式即為證
,這樣可用換元法,設
,且不妨役
,于是有
,只要證
,此時又可轉化為求函數
的最大值,求出
的導數
,
,為確定
的正負及零點,可對函數
求導,利用導數確定它的單調性,最終確定
的單調性,從而得出結論.
試題解析:
(1)依題意,
故當時,
,當
時,
故當時,函數
有極小值
,無極大值.
(2)因為,
是方程
的兩個不同的實數根.
∴兩式相減得
,解得
要證: ,即證:
,即證:
,
即證,
不妨設,令
.只需證
.
設,∴
;
令,∴
,∴
在
上單調遞減,
∴
,∴
,∴
在
為減函數,∴
.
即在
恒成立,∴原不等式成立,即
.
科目:高中數學 來源: 題型:
【題目】已知函數是定義在
上的偶函數,且當
時,
.現已畫出函數
在
軸左側的圖象,如圖所示,并根據圖象:
(1)直接寫出函數,
的增區間;
(2)寫出函數,
的解析式;
(3)若函數,
,求函數
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正方體ABCD-A1B1C1D1的棱長為2,E為棱CC1的中點,點M在正方形BCC1B1內運動,且直線AM//平面A1DE,則動點M 的軌跡長度為( )
A. B. π C. 2 D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,函數
.
⑴若的定義域為
,求實數
的取值范圍;
⑵當,求函數
的最小值
;
⑶是否存在實數,使得函數
的定義域為
,值域為
?若存在,求出
的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
(
)的左右焦點分別為
,
,若橢圓上一點
滿足
,且橢圓
過點
,過點
的直線
與橢圓
交于兩點
.
(1)求橢圓的方程;
(2)過點作
軸的垂線,交橢圓
于
,求證:
,
,
三點共線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著資本市場的強勢進入,互聯網共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調查機構借助網絡進行了問卷調查,并從參與調查的網友中隨機抽取了200人進行抽樣分析,得到下表(單位:人):
經常使用 | 偶爾或不用 | 合計 | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據以上數據,能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關?
(2)現從所有抽取的30歲以上的網民中利用分層抽樣抽取5人,
求這5人中經常使用、偶爾或不用共享單車的人數;
從這5人中,在隨機選出2人贈送一件禮品,求選出的2人中至少有1人經常使用共享單車的概率.
參考公式: ,其中
.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商店經營的某種消費品的進價為每件14元,月銷售量(百件)與每件的銷售價格
(元)的關系如圖所示,每月各種開支2 000元.
(1)寫出月銷售量(百件)關于每件的銷售價格
(元)的函數關系式.
(2)寫出月利潤(元)與每件的銷售價格
(元)的函數關系式.
(3)當該消費品每件的銷售價格為多少元時,月利潤最大?并求出最大月利潤.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com