精英家教網 > 高中數學 > 題目詳情

【題目】[選修4-4:坐標系與參數方程]

在直角坐標系中,曲線的參數方程為為參數),直線的參數方程為為參數).

(1)求的直角坐標方程;

(2)若曲線截直線所得線段的中點坐標為,求的斜率.

【答案】(1)時,的直角坐標方程為時,的直角坐標方程為(2)

【解析】分析:(1)根據同角三角函數關系將曲線的參數方程化為直角坐標方程,根據代入消元法將直線的參數方程化為直角坐標方程,此時要注意分兩種情況.(2)將直線參數方程代入曲線的直角坐標方程,根據參數幾何意義得之間關系,求得,即得的斜率.

詳解:(1)曲線的直角坐標方程為

時,的直角坐標方程為,

時,的直角坐標方程為

(2)將的參數方程代入的直角坐標方程,整理得關于的方程

.①

因為曲線截直線所得線段的中點內,所以①有兩個解,設為,則

又由①得,故,于是直線的斜率

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知四棱錐SABCD中,底面ABCD是邊長為4的菱形,∠BAD60°,SASD2,點E是棱AD的中點,點F在棱SC上,且λ,SA//平面BEF

1)求實數λ的值;

2)求三棱錐FEBC的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校組織了一次新高考質量測評,在成績統計分析中,某班的數學成績的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見部分如下,據此解答如下問題:

1)求該班數學成績在的頻率及全班人數;

2)根據頻率分布直方圖估計該班這次測評的數學平均分;

3)若規定90分及其以上為優秀,現從該班分數在80分及其以上的試卷中任取2份分析學生得分情況,求在抽取的2份試卷中至少有1份優秀的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,曲線由左半橢圓和圓軸右側的部分連接而成, , 的公共點,點, (均異于點 )分別是, 上的動點.

Ⅰ)若的最大值為,求半橢圓的方程;

Ⅱ)若直線過點,且, ,求半橢圓的離心率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了增強高考與高中學習的關聯度,考生總成績由統一高考的語文、數學、外語3個科目成績和高中學業水平考試3個科目成績組成.保持統一高考的語文、數學、外語科目不變,分值不變,不分文理科,外語科目提供兩次考試機會.計入總成績的高中學業水平考試科目,由考生根據報考高校要求和自身特長,在思想政治、歷史、地理、物理、化學、生物、信息技術七科目中自主選擇三科.

(1)某高校某專業要求選考科目物理,考生若要報考該校該專業,則有多少種選考科目的選擇;

(2)甲、乙、丙三名同學都選擇了物理、化學、歷史組合,各學科成績達到二級的概率都是0.8,且三人約定如果達到二級不參加第二次考試,達不到二級參加第二次考試,如果設甲、乙、丙參加第二次考試的總次數為,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是定義域為的奇函數.

(1)求實數的值;

(2)若,不等式上恒成立,求實數的取值范圍;

(3)若 上最小值為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】是虛數,是實數,且.

1)求的值以及的實部的取值范圍;

2)若,求證為純虛數;

3)在(2)的條件下,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,側面底面ABCD,側棱,底面ABCD為直角梯形,其中,,,OAD中點.

求直線PB與平面POC所成角的余弦值.

B點到平面PCD的距離.

線段PD上是否存在一點Q,使得二面角的余弦值為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列五個命題:

函數的一條對稱軸是

函數的圖象關于點(,0)對稱;

正弦函數在第一象限為增函數

,則,其中

以上四個命題中正確的有    (填寫正確命題前面的序號)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视