精英家教網 > 高中數學 > 題目詳情
橢圓的離心率為
1
2
,并且經過點(2,0),此橢圓的標準方程可能是( 。
分析:由于橢圓的焦點位置未定,故需要進行分類討論,進而可求橢圓的標準方程.
解答:解:(1)當橢圓的焦點在x軸上時,∵a=2,
c
a
=
1
2
,
∴c=1,
∴b2=a2-c2=3.
∴橢圓方程為
x2
4
+
y2
3
=1.
(2)當橢圓的焦點在y軸上時,∵b=2,
c
a
=
1
2

同理得橢圓的方程為
y2
16
3
+
x2
4
=1

綜上知,所求橢圓的方程為
x2
4
+
y2
3
=1或
y2
16
3
+
x2
4
=1

故選A.
點評:本題重點考查橢圓的標準方程,考查分類討論的數學思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,F是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的一個焦點,A,B是橢圓的兩個頂點,橢圓的離心率為
1
2
.點C在x軸上,BC⊥BF,B,C,F三點確定的圓M的半徑為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點A的直線l與圓M交于P、Q兩點,且
MP
MQ
=-2
求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點P(
3
2
,1)
在橢圓Q:
y2
a2
+
x2
b2
=1(a>b>0)
上,且該橢圓的離心率為
1
2

(1)求橢圓Q的方程;
(2)若直線l與直線AB:y=-4的夾角的正切值為2,且橢圓Q上的動點M到直線l的距離的最小值為
5
,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓Ω的離心率為
1
2
,它的一個焦點和拋物線y2=-4x的焦點重合.
(1)求橢圓Ω的方程;
(2)若橢圓
x2    
a2
+
 y2   
b2
=1(a>b>0)
上過點(x0,y0)的切線方程為
 x0x   
a2
+
y0y    
b2
=1

①過直線l:x=4上點M引橢圓Ω的兩條切線,切點分別為A,B,求證:直線AB恒過定點C;
②是否存在實數λ使得|AC|+|BC|=λ•|AC|•|BC|,若存在,求出A的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線y=-x+1與橢圓
x2
a2
+
y2
b2
=1(a>b>0)相交于A、B兩點,且OA⊥OB(其中O為坐標原點).
(1)若橢圓的離心率為
1
2
,求橢圓的方程;
(2)求證:不論a,b如何變化,橢圓恒過第一象限內的一個定點P,并求點P的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,點F是橢圓W:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點,A、B分別是橢圓的右頂點與上頂點,橢圓的離心率為
1
2
,三角形ABF的面積為
3
3
2

(Ⅰ)求橢圓W的方程;
(Ⅱ)對于x軸上的點P(t,0),橢圓W上存在點Q,使得PQ⊥AQ,求實數t的取值范圍;
(Ⅲ)直線l:y=kx+m(k≠0)與橢圓W交于不同的兩點M、N (M、N異于橢圓的左右頂點),若以MN為直徑的圓過橢圓W的右頂點A,求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视