【題目】已知橢圓的一個焦點與拋物線
的焦點重合,且此拋物線的準線被橢圓
截得的弦長為
.
(1)求橢圓的標準方程;
(2)直線交橢圓
于
、
兩點,線段
的中點為
,直線
是線段
的垂直平分線,試問直線
是否過定點?若是,請求出該定點的坐標;若不是,請說明理由.
【答案】(1);(2)直線
過定點
,詳見解析.
【解析】
(1)由題意得出,由題意知點
在橢圓
上,由此得出關于
、
的方程組,求出
、
的值,即可得出橢圓
的標準方程;
(2)解法一:由題意可知,直線的斜率不為零,然后分直線
的斜率存在且不為零和直線
的斜率不存在兩種情況討論,在第一種情況下,設直線
的方程為
,設點
、
,將直線
的方程與橢圓
的方程聯立,列出韋達定理,由
得出
,并寫出直線
的方程,由此可得出直線
所過定點的坐標;在第二種情況下可得出直線
為
軸,即可得出直線
過定點
,由此得出結論;
解法二:由題意可知,直線的斜率不為零,然后分直線
的斜率存在且不為零和直線
的斜率不存在兩種情況討論,在第一種情況下,由點差法可得出直線
的斜率為
,可寫出直線
的方程,即可得出直線
所過定點的坐標;在第二種情況下可得出直線
為
軸,即可得出直線
過定點
,由此得出結論.
(1)拋物線的焦點為
,準線為
.
由于拋物線的準線
截橢圓
所得弦長為
,
則點在橢圓
上,則有
,解得
,
因此,橢圓的標準方程為
;
(2)法一:顯然點在橢圓
內部,故
,且直線
的斜率不為
.
當直線的斜率存在且不為
時,易知
,設直線
的方程為
,
代入橢圓方程并化簡得:.
設,
,則
,解得
.
因為直線是線段
的垂直平分線,
故直線的方程為
,即
,即
.
令,此時
,
,于是直線
過定點
;
當直線的斜率不存在時,易知
,此時直線
,故直線
過定點
.
綜上所述,直線過定點
;
法二:顯然點在橢圓
內部,故
,且直線
的斜率不為
.
當直線的斜率存在且不為
時,設
,
,
則有,
,
兩式相減得,
由線段的中點為
,則
,
,
故直線的斜率
,
因為直線是線段
的垂直平分線,
故直線的方程為
,即
,即
.
令,此時
,
,于是直線
過定點
;
當直線的斜率不存在時,易知
,此時直線
,故直線
過定點
綜上所述,直線過定點
.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,動點
(其中
)到點
的距離的
倍與點
到直線
的距離的
倍之和記為
,且
.
(Ⅰ)求點的軌跡
的方程;
(Ⅱ)設過點的直線
與軌跡
交于
兩點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年10月1日,在慶祝新中國成立70周年閱兵中,由我國自主研制的軍用飛機和軍用無人機等參閱航空裝備分秒不差飛越天安門,壯軍威,振民心,令世人矚目.飛行員高超的飛行技術離不開艱苦的訓練和科學的數據分析.一次飛行訓練中,地面觀測站觀測到一架參閱直升飛機以千米/小時的速度在同一高度向正東飛行,如圖,第一次觀測到該飛機在北偏西
的方向上,1分鐘后第二次觀測到該飛機在北偏東
的方向上,仰角為
,則直升機飛行的高度為________千米.(結果保留根號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將曲線上每個點的橫坐標伸長為原來的
倍(縱坐標不變),得到
的圖象,則下列說法正確的是( )
A.的圖象關于直線
對稱
B.在
上的值域為
C.的圖象關于點
對稱
D.的圖象可由
的圖象向右平移
個單位長度得到
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的方程為
,橢圓
的離心率正好是雙曲線
的離心率的倒數,橢圓
的短軸長等于拋物線
上一點
到拋物線焦點
的距離.
(1)求橢圓的標準方程;
(2)若直線與橢圓
的兩個交點為
,
兩點,已知圓
:
與
軸的交點分別為
,
(點
在
軸的正半軸),且直線
與圓
相切,求
的面積與
的面積乘積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com