【題目】定義:若兩個橢圓的離心率相等,則稱兩個橢圓是“相似”的,如圖,橢圓與橢圓
是相似的兩個橢圓,并且相交于上下兩個頂點,橢圓
的長軸長是4,橢圓
,短軸長是1,點
,
分別是橢圓
的左焦點與右焦點.
(1)求橢圓,
的方程;
(2)過的直線交橢圓
于點
,
,求
面積的最大值.
科目:高中數學 來源: 題型:
【題目】如圖,在梯形中,
,
.
,且
平面
,
,點
為
上任意一點.
(1)求證: ;
(2)點在線段
上運動(包括兩端點),若平面
與平面
所成的銳二面角為60°,試確定點
的位置.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右頂點分別為
,左焦點為
,點
為橢圓
上任一點,若直線
與
的斜率之積為
,且橢圓
經過點
.
(1)求橢圓的方程;
(2)若交直線
于
兩點,過左焦點
作以
為直徑的圓的切線.問切線長是否為定值,若是,請求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市舉行“中學生詩詞大賽”,分初賽和復賽兩個階段進行,規定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區間內,其頻率分布直方圖如圖.
(Ⅰ)求獲得復賽資格的人數;
(Ⅱ)從初賽得分在區間的參賽者中,利用分層抽樣的方法隨機抽取
人參加學校座談交流,那么從得分在區間
與
各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的人中,選出
人參加全市座談交流,設
表示得分在區間
中參加全市座談交流的人數,求
的分布列及數學期望E(X).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓,離心率
.左焦點為
,過點
且與
軸垂直的直線被橢圓截得的線段長為3.
(1)求該橢圓的方程;
(2)過橢圓的左焦點的任意一條直線與橢圓交于
兩點,在
軸上是否存在定點
使得
軸平分
,若存在,求出定點坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱 中,D為A1B1的中點,AB=BC=2,
,
,則異面直線BD與AC所成的角為( )
A. 30°B. 45°C. 60°D. 90°
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
過點
,離心率為
.
(1)求橢圓的方程;
(2),
是過點
且互相垂直的兩條直線,其中
交圓
于
,
兩點,
交橢圓
于另一個點
,求
面積取得最大值時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場銷售某種品牌的空調器,每周周初購進一定數量的空調器,商場每銷售一臺空調器可獲利500元,若供大于求,則每臺多余的空調器需交保管費100元;若供不應求,則可從其他商店調劑供應,此時每臺空調器僅獲利潤200元。
(Ⅰ)若該商場周初購進20臺空調器,求當周的利潤(單位:元)關于當周需求量n(單位:臺,)的函數解析式
;
(Ⅱ)該商場記錄了去年夏天(共10周)空調器需求量n(單位:臺),整理得下表:
周需求量n | 18 | 19 | 20 | 21 | 22 |
頻數 | 1 | 2 | 3 | 3 | 1 |
以10周記錄的各需求量的頻率作為各需求量發生的概率,若商場周初購進20臺空調器,X表示當周的利潤(單位:元),求X的分布列及數學期望。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(t,1)為函數y=ax2+bx+4(a,b為常數,且a≠0)與y=x圖象的交點.
(1)求t;
(2)若函數y=ax2+bx+4的圖象與x軸只有一個交點,求a,b;
(3)若1≤a≤2,設當≤x≤2時,函數y=ax2+bx+4的最大值為m,最小值為n,求m﹣n的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com