(12分)如圖,等邊與直角梯形
垂直,
,
,
,
.若
分別為
的中點.
(1)求的值; (2)求面
與面
所成的二面角大小.
(1) ;
(2)面SCD與面SAB所成的二面角大小為.
解析試題分析:(1)因為,然后再在
中求值即可.
(2)利用空間向量法求二面角,要首先求出二面角兩個面的法向量然后轉化為兩個面的法向量的夾角求解.
(1)在正中
,面
面
,
面
,
,
中,
(也可用坐標計算)………6分
(2)建立如圖所示的直角坐標系
則,
,
設面SCD的法向量為
由,由
不妨設則
,
,
,
面SAB的法向量為
面SCD與面SAB所成的二面角大小為
.
考點:空間幾何體的線線,線面,面面垂直的判定與性質,向量的運算,二面角.
點評:(1)本小題在進行向量運算時用到的公式:若M為BC的中點,則.
(2)在利用空間向量求二面角時首先求出兩個面的法向量,同時要注意法向量的夾角與二面角可能相等也可能互補,要注意判斷準確.
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
如圖所示,在直棱柱中,
,
,
的中點.
(1)求證:∥
;
(2)求證:;
(3)在上是否存在一點
,使得
,若存在,試確定
的位置,并判斷
與平面
是否垂直?若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在長方體中,
,且
.
(I)求證:對任意,總有
;
(II)若,求二面角
的余弦值;
(III)是否存在,使得
在平面
上的射影平分
?若存在, 求出
的值, 若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐P—ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點A在PD上的射影為點G,點E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E—PC—A的正弦值.(本題滿分14分)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
( 14分)如圖,已知矩形ABCD中,AB=10,BC=6,將矩形沿對角線BD把△ABD折起,使A移到點,且
在平面BCD上的射影O恰好在CD上.
(Ⅰ)求證:;
(Ⅱ)求證:平面平面
;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com