如圖,橢圓C:的左頂點為A,M是橢圓C上異于點A的任意一點,點P與點A關于點M對稱.
(1)若點P的坐標,求m的值;
(2)若橢圓C上存在點M,使得,求m的取值范圍.
(1)(2)
解析試題分析:
(1)根據m的取值范圍可以判斷橢圓C的焦點,得到點A的坐標,則根據點與點的中點坐標公式可以用點P,A的坐標計算得到點M的坐標,把M點的坐標帶入橢圓即可求的m的值.
(2)從題得A,P關于M對稱,則可以設出M點的坐標,得到P點的坐標(中點的坐標公式),因為OM與OP垂直,則根據向量的內積為0可以得到關于M點坐標的方程,則把該方程與M點滿足的橢圓方程聯立消縱坐標即可求出m關于M點橫坐標的方程,再利用基本不等式就可以求出m的取值范圍(注意取得等號條件的驗證與m值本身具有正數的范圍)
試題解析:
(1)依題意,是線段
的中點,因為
,
所以點的坐標為
. 2分
由點在橢圓
上,所以
,解得
. 4分
(2)設,則
,且
.① 5分
因為是線段
的中點,所以
. 7分
因為,所以
.② 9分
由①,②消去,整理得
. 11分
所以, 13分
當且僅當時,上式等號成立.
所以的取值范圍是
. 14分
考點:橢圓幾何性質橢圓標準方程不等式
科目:高中數學 來源: 題型:解答題
如圖,已知雙曲線的左、右頂點分別為A1、A2,動直線l:y=kx+m與圓
相切,且與雙曲線左、右兩支的交點分別為
.
(1)求k的取值范圍,并求的最小值;
(2)記直線的斜率為
,直線
的斜率為
,那么
是定值嗎?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知平面上的動點P(x,y)及兩個定點A(-2,0),B(2,0),直線PA,PB的斜率分別為K1,K2且K1K2=-
(1).求動點P的軌跡C方程;
(2).設直線L:y=kx+m與曲線C交于不同兩點,M,N,當OM⊥ON時,求O點到直線L的距離(O為坐標原點)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知點為橢圓
右焦點,圓
與橢圓
的一個公共點為
,且直線
與圓
相切于點
.
(1)求的值及橢圓
的標準方程;
(2)設動點滿足
,其中M、N是橢圓
上的點,
為原點,直線OM與ON的斜率之積為
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓的方程為
,離心率為
,且短軸一端點和兩焦點構成的三角形面積為1,拋物線
的方程為
,拋物線的焦點F與橢圓的一個頂點重合.
(1)求橢圓和拋物線
的方程;
(2)過點F的直線交拋物線于不同兩點A,B,交y軸于點N,已知
的值.
(3)直線交橢圓
于不同兩點P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足
(O為原點),若點S滿足
,判定點S是否在橢圓
上,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,已知點和
,圓
是以
為圓心,半徑為
的圓,點
是圓
上任意一點,線段
的垂直平分線
和半徑
所在的直線交于點
.
(1)當點在圓上運動時,求點
的軌跡方程
;
(2)已知,
是曲線
上的兩點,若曲線
上存在點
,滿足
(
為坐標原點),求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓 (a>b>0)的上、下頂點分別為A、B,已知點B在直線l:
上,且橢圓的離心率e =
.
(1)求橢圓的標準方程;
(2)設P是橢圓上異于A、B的任意一點,PQ⊥y軸,Q為垂足,M為線段PQ中點,直線AM交直線l于點C,N為線段BC的中點,求證:OM⊥MN.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
給定橢圓:
,稱圓心在原點
,半徑為
的圓是橢圓
的“準圓”.若橢圓
的一個焦點為
,其短軸上的一個端點到
的距離為
.
(1)求橢圓的方程和其“準圓”方程;
(2)點是橢圓
的“準圓”上的動點,過點
作橢圓的切線
交“準圓”于點
.
(ⅰ)當點為“準圓”與
軸正半軸的交點時,求直線
的方程并證明
;
(ⅱ)求證:線段的長為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,過拋物線C:y2=4x上一點P(1,-2)作傾斜角互補的兩條直線,分別與拋物線交于點A(x,y1),B(x2,y2).
(1)求y1+y2的值;
(2)若y1≥0,y2≥0,求△PAB面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com