【題目】設數列滿足
.
(1)求的通項公式;
(2)求數列的前
項和
.
【答案】(1);(2)
.
【解析】
(1)在中,將
代
得:
,由兩式作商得:
,問題得解。
(2)利用(1)中結果求得,分組求和,再利用等差數列前
項和公式及乘公比錯位相減法分別求和即可得解。
(1)由n=1得,
因為,
當n≥2時,,
由兩式作商得:(n>1且n∈N*),
又因為符合上式,
所以(n∈N*).
(2)設,
則bn=n+n·2n,
所以Sn=b1+b2+…+bn=(1+2+…+n)+
設Tn=2+2·22+3·23+…+(n-1)·2n-1+n·2n,①
所以2Tn=22+2·23+…(n-2)·2n-1+(n-1)·2n+n·2n+1,②
①-②得:-Tn=2+22+23+…+2n-n·2n+1,
所以Tn=(n-1)·2n+1+2.
所以,
即.
科目:高中數學 來源: 題型:
【題目】如圖,在以P為頂點的圓錐中,母線長為,底面圓的直徑AB長為2,O為圓心.C是圓O所在平面上一點,且AC與圓O相切.連接BC交圓于點D,連接PD,PC,E是PC的中點,連接OE,ED.
(1)求證:平面平面PAC;
(2)若二面角的大小為
,求面PAC與面DOE所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
過點
和點
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓
相交于不同的兩點
,
,是否存在實數
,使得
?若存在,求出實數
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為拋物線
:
的焦點,過
的動直線交拋物線
于
,
兩點.當直線與
軸垂直時,
.
(1)求拋物線的方程;
(2)設直線的斜率為1且與拋物線的準線
相交于點
,拋物線
上存在點
使得直線
,
,
的斜率成等差數列,求點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,網上購物已經成為人們消費的一種習慣.假設某淘寶店的一種裝飾品每月的銷售量 (單位:千件)與銷售價格
(單位:元/件)之間滿足如下的關系式:
為常數.已知銷售價格為
元/件時,每月可售出
千件.
(1)求實數的值;
(2)假設該淘寶店員工工資、辦公等所有的成本折合為每件2元(只考慮銷售出的裝飾品件數),試確定銷售價格的值,使該店每月銷售裝飾品所獲得的利潤最大.(結果保留一位小數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某縣畜牧技術員張三和李四年來一直對該縣山羊養殖業的規模進行跟蹤調查,張三提供了該縣某山羊養殖場年養殖數量
(單位:萬只)與相應年份
(序號)的數據表和散點圖(如圖所示),根據散點圖,發現y與x有較強的線性相關關系.
年份序號 | |||||||||
年養殖山羊 |
(1)根據表中的數據和所給統計量,求關于
的線性回歸方程(參考統計量:
,
;
(2)李四提供了該縣山羊養殖場的個數(單位:個)關于
的回歸方程
.
試估計:①該縣第一年養殖山羊多少萬只?
②到第幾年,該縣山羊養殖的數量與第一年相比縮小了?
附:回歸直線方程的斜率和截距的最小二乘估計公式分別為:,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某外國語學校舉行的(高中生數學建模大賽)中,參與大賽的女生與男生人數之比為
,且成績分布在
,分數在
以上(含
)的同學獲獎.按女生、男生用分層抽樣的方法抽取
人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.
(Ⅰ)求的值,并計算所抽取樣本的平均值
(同一組中的數據用該組區間的中點值作代表);
(Ⅱ)填寫下面的列聯表,并判斷在犯錯誤的概率不超過
的前提下能否認為“獲獎與女生、男生有關”.
女生 | 男生 | 總計 | |
獲獎 | |||
不獲獎 | |||
總計 | |||
附表及公式:
其中,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com