【題目】已知拋物線,其焦點為
,直線
過點
與
交于
、
兩點,當
的斜率為
時,
.
(1)求的值;
(2)在軸上是否存在一點
滿足
(點
為坐標原點)?若存在,求
點的坐標;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知曲線C的參數方程為(α為參數,直線l:y=kx(k>0),以O為極點,x軸正半軸為極軸建立極坐標系.
(Ⅰ)求曲線C的極坐標方程;
(Ⅱ)若直線l與曲線C交于A,B兩點,求|OA||OB|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年,新冠狀肺炎疫情牽動每一個中國人的心,危難時刻眾志成城,共克時艱,為疫區助力.福建省漳州市東山縣共101個海鮮商家及個人為緩解武漢物質壓力,募捐價值百萬的海鮮輸送武漢.東山島,別稱陵島,形似蝴蝶亦稱蝶島,隸屬于福建省漳州市東山縣,是福建省第二大島,中國第七大島,介于廈門市和廣東省汕頭之間,東南是著名的閩南漁場和粵東漁場交匯處,因地理位置發展海產品養殖業具有得天獨厚的優勢.根據養殖規模與以往的養殖經驗,某海鮮商家的海產品每只質量(克)在正常環境下服從正態分布.
(1)隨機購買10只該商家的海產品,求至少買到一只質量小于265克該海產品的概率;
(2)2020年該商家考慮增加先進養殖技術投入,該商家欲預測先進養殖技術投入為49千元時的年收益增量.現用以往的先進養殖技術投入(千元)與年收益增量
(千元).
的數據繪制散點圖,由散點圖的樣本點分布,可以認為樣本點集中在曲線
的附近,且
,
,其中
.根據所給的統計量,求y關于x的回歸方程,并預測先進養殖技術投入為49千元時的年收益增量.
附:若隨機變量,則
;
對于一組數據,其回歸線
的斜率和截距的最小二乘估計分別為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正三角形ABE與菱形ABCD所在的平面互相垂直,,
,M是AB的中點,N是CE的中點.
(1)求證:;
(2)求證:平面ADE;
(3)求點A到平面BCE的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一批用于手電筒的電池,每節電池的壽命服從正態分布(壽命單位:小時).考慮到生產成本,電池使用壽命在
內是合格產品.
(1)求一節電池是合格產品的概率(結果四舍五入,保留一位小數);
(2)根據(1)中的數據結果,若質檢部門檢查4節電池,記抽查電池合格的數量為,求隨機變量
的分布列、數學期望及方差.
附:若隨機變量服從正態分布
,則
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國在歐洲的某孔子學院為了讓更多的人了解中國傳統文化,在當地舉辦了一場由當地人參加的中國傳統文化知識大賽,為了了解參加本次大賽參賽人員的成績情況,從參賽的人員中隨機抽取名人員的成績(滿分100分)作為樣本,將所得數據進行分析整理后畫出頻率分布直方圖如圖所示,已知抽取的人員中成績在[50,60)內的頻數為3.
(1)求的值和估計參賽人員的平均成績(保留小數點后兩位有效數字);
(2)已知抽取的名參賽人員中,成績在[80,90)和[90,100]女士人數都為2人,現從成績在[80,90)和[90,100]的抽取的人員中各隨機抽取2人,記這4人中女士的人數為
,求
的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,已知拋物線
上一點
到焦點
的距離為6,點
為其準線
上的任意一點,過點
作拋物線
的兩條切線,切點分別為
.
(1)求拋物線的方程;
(2)當點在
軸上時,證明:
為等腰直角三角形.
(3)證明:為直角三角形.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com