精英家教網 > 高中數學 > 題目詳情

【題目】在數列{an}中,a1= ,且 =nan(n∈N+).
(1)寫出此數列的前4項;
(2)歸納猜想{an}的通項公式,并用數學歸納法加以證明.

【答案】
(1)解:a1= ,a2= ,a3= ,a4=
(2)解:猜想:an=

證明:①當n=1時,猜想顯然成立.

②假設n=k時猜想成立,即ak=

=nan,∴ =(2n﹣1)an

,

∴a1+a2+…+ak=(2k2+3k)ak+1

又a1+a2+…+ak=(2k2﹣k)ak=

∴ak+1= = ,

∴當n=k+1時,猜想成立.

由①②可知,對一切n∈N+,都有an=


【解析】(1)根據遞推式,依次令n=2,3,4計算a2 , a3 , a4;(2)根據前4相猜想通項公式,驗證n=1時猜想成立,假設n=k時猜想成立,根據條件推導ak+1得出結論.
【考點精析】關于本題考查的歸納推理和數學歸納法的定義,需要了解根據一類事物的部分對象具有某種性質,退出這類事物的所有對象都具有這種性質的推理,叫做歸納推理;數學歸納法是證明關于正整數n的命題的一種方法才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】水是地球上寶貴的資源,由于價格比較便宜在很多不缺水的城市居民經常無節制的使用水資源造成嚴重的資源浪費.某市政府為了提倡低碳環保的生活理念鼓勵居民節約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸),一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數據按照,,…,分成9組,制成了如圖所示的頻率分布直方圖.

(1)若全市居民中月均用水量不低于3噸的人數為3.6萬,試估計全市有多少居民?并說明理由;

(2)若該市政府擬采取分層抽樣的方法在用水量噸數為之間選取7戶居民作為議價水費價格聽證會的代表,并決定會后從這7戶家庭中按抽簽方式選出4戶頒發“低碳環保家庭”獎,設為用水量噸數在中的獲獎的家庭數,為用水量噸數在中的獲獎家庭數,記隨機變量,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工藝廠有銅絲5萬米,鐵絲9萬米,準備用這兩種材料編制成花籃和花盆出售,已知一只花籃需要用銅絲200米,鐵絲300米;編制一只花盆需要100米,鐵絲300米,設該廠用所有原來編制個花籃, 個花盆.

(Ⅰ)列出滿足的關系式,并畫出相應的平面區域;

(Ⅱ)若出售一個花籃可獲利300元,出售一個花盤可獲利200元,那么怎樣安排花籃與花盆的編制個數,可使得所得利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現的虧損.某投資人打算投資甲、乙兩個項目.根據預測,甲、乙項目可能的最大盈利率分別為100%和50%,可能的最大虧損分別為30%和10%.投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元.問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數),其中為自然對數的底數.

(1)討論函數的單調性及極值;

(2)若不等式內恒成立,求證: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓G: + =1(b>0)的上、下頂點和右焦點分別為M、N和F,且△MFN的面積為4
(1)求橢圓G的方程;
(2)若斜率為1的直線l與橢圓G交于A、B兩點.以AB為底作等腰三角形,頂點為P(﹣3,2),求△PAB的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x﹣alnx,(a∈R).
(1)討論函數f(x)在定義域內的極值點的個數;
(2)設g(x)=﹣ ,若不等式f(x)>g(x)對任意x∈[1,e]恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)= ,其中a∈R.
(1)若a=1,f(x)的定義域為區間[0,3],求f(x)的最大值和最小值;
(2)若f(x)的定義域為區間(0,+∞),求a的取值范圍,使f(x)在定義域內是單調減函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=1+lnx﹣ ,其中k為常數.
(1)若k=0,求曲線y=f(x)在點(1,f(1))處的切線方程.
(2)若k=5,求證:f(x)有且僅有兩個零點;
(3)若k為整數,且當x>2時,f(x)>0恒成立,求k的最大值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视