精英家教網 > 高中數學 > 題目詳情

【題目】在矩形ABCD中,,沿矩形對角線BD折起形成四面體ABCD,在這個過程中,現在下面四個結論:①在四面體ABCD中,當時,;②四面體ABCD的體積的最大值為;③在四面體ABCD中,BC與平面ABD所成角可能為;④四面體ABCD的外接球的體積為定值.其中所有正確結論的編號為( )

A.①④B.①②C.①②④D.②③④

【答案】C

【解析】

對四個結論逐一分析判斷,

對于①,利用翻折前后這個條件不變,易得平面,從而;

對于②,當平面平面時,四面體ABCD的體積最大,易得出體積;

對于③,當平面平面時,BC與平面ABD所成的角最大,即,計算其正弦值可得出結果;

對于④,在翻折的過程中,BD的中點到四面體四個頂點的距離均相等,所以外接球的直徑恒為BD,體積恒為定值.

如圖,當時,∵,∴平面,

平面,∴,即①正確;

當平面平面時,四面體ABCD的體積最大,最大值為,即②正確;

當平面平面時,BC與平面ABD所成的角最大,為,而,

BC與平面ABD所成角一定小于,即③錯誤;

在翻折的過程中,始終是直角三角形,斜邊都是BD,其外接球的球心永遠是BD的中點,外接球的直徑為BD,

∴四面體ABCD的外接球的體積不變,即④正確.

故正確的有①②④.

故選:C.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】中國是茶的故鄉,也是茶文化的發源地.中國茶的發現和利用已有四千七百多年的歷史,且長盛不衰,傳遍全球.為了弘揚中國茶文化,某酒店推出特色茶食品金萱排骨茶,為了解每壺金萱排骨茶中所放茶葉量克與食客的滿意率的關系,通過試驗調查研究,發現可選擇函數模型來擬合的關系,根據以下數據:

茶葉量

1

2

3

4

5

4.34

4.36

4.44

4.45

4.51

可求得y關于x的回歸方程為(

A.B.

C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知變量,滿足下列條件:

1)求的最大值;

2)求的最小值;

3)求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設某校新、老校區之間開車單程所需時間為T,T只與道路暢通狀況有關,對其容量為100的樣本進行統計,結果如下:

T(分鐘)

25

30

35

40

頻數(次)

20

30

40

10

劉教授駕車從老校區出發,前往新校區做一個50分鐘的講座,結束后立即返回老校區,求劉教授從離開老校區到返月老校區共用時間不超過120分鐘的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知復數,,,,,滿足

1)若所對應點在圓上,求所對應點的軌跡;

2)是否存在這樣的直線,對應點在上,所對應點也在直線上?若存在,求出所有這些直線;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】202048日零時正式解除離漢通道管控,這標志著封城76天的武漢打開城門了.在疫情防控常態下,武漢市有序復工復產復市,但是仍然不能麻痹大意仍然要保持警惕,嚴密防范、慎終如始.為科學合理地做好小區管理工作,結合復工復產復市的實際需要,某小區物業提供了A,B兩種小區管理方案,為了決定選取哪種方案為小區的最終管理方案,隨機選取了4名物業人員進行投票,物業人員投票的規則如下:①單獨投給A方案,則A方案得1分,B方案得﹣1分;②單獨投給B方案,則B方案得1分,A方案得﹣1分;③棄權或同時投票給A,B方案,則兩種方案均得0.1名物業人員的投票結束,再安排下1名物業人員投票,當其中一種方案比另一種方案多4分或4名物業人員均已投票時,就停止投票,最后選取得分多的方案為小區的最終管理方案.假設A,B兩種方案獲得每1名物業人員投票的概率分別為.

1)在第1名物業人員投票結束后,A方案的得分記為ξ,求ξ的分布列;

2)求最終選取A方案為小區管理方案的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知雙曲線的右焦點為F,點A,B分別在C的兩條漸近線上,軸,O為坐標原點).

1)求雙曲線C的方程;

2)過C上一點的直線與直線AF相交于點M,與直線相交于點N.證明:當點PC上移動時,恒為定值,并求此定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個透明密閉的立方體容器,恰好盛有該容器一半容積的水任意轉動這一立方體,則水面在容器中的形狀可能是________.(從正方形,三角形,菱形,矩形,等腰梯形,正六邊形,正五邊形中選取正確的都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是國家統計局于202019日發布的201812月到201912月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環比是指本期與上期作對比.如:20192月與20182月相比較稱同比,20192月與20191月相比較稱環比)根據該折線圖,下列結論錯誤的是(

A.201912月份,全國居民消費價格環比持平

B.201812月至201912月全國居民消費價格環比均上漲

C.201812月至201912月全國居民消費價格同比均上漲

D.201811月的全國居民消費價格高于201712月的全國居民消費價格

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视