【題目】如圖,在直三棱柱ABC中,AC=3,BC=4,AB=5,A
=4.
(1)證明:;
(2)求二面角的余弦值大。
【答案】⑴見證明;⑵
【解析】
(1)根據AC,BC,CC1兩兩垂直,建立如圖以C為坐標原點,建立空間直角坐標系C﹣xyz,寫出要用的點的坐標,根據兩個向量的數量級等于0,證出兩條線段垂直.
(2)根據所給的兩個平面的法向量一個可以直接看出另一個設出根據數量級等于0,求出結果,根據兩個平面的法向量所成的角求出兩個平面所成的角.
∵直三棱柱ABC﹣A1B1C1,底面三邊長AC=3,BC=4,AB=5,
∴AC,BC,CC1兩兩垂直.
如圖以C為坐標原點,建立空間直角坐標系C﹣xyz,則C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4). …(2分)
證明:(1)∵=(﹣3,0,0),
=(0,﹣4,4),
∴=0,
故AC⊥BC1…(4分)
解:(2)平面ABC的一個法向量為=(0,0,1),
設平面C1AB的一個法向量為=(x,y,z),
=(﹣3,0,4),
=(﹣3,4,0),
由得:
…(6分)
令x=4,則z=3,y=3則=(4,3,3).…(7分)
故cos<,
>=
=
.
即二面角ABC的余弦值為
.
科目:高中數學 來源: 題型:
【題目】已知A(1,0,0),B(0,1,0),C(0,0,2).
(1)若,求點D的坐標;
(2)問是否存在實數α,β,使得=α
+β
成立?若存在,求出α,β的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點.
(Ⅰ)證明:CE∥平面PAB;
(Ⅱ)求直線CE與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD中,以D為原點建立空間直角坐標系,E為B
的中點,F為
的中點,則下列向量中,能作為平面AEF的法向量的是( )
A. (1,-2,4) B. (-4,1,-2)
C. (2,-2,1) D. (1,2,-2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
經過點
(
,
),且兩個焦點
,
的坐標依次為(
1,0)和(1,0).
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設,
是橢圓
上的兩個動點,
為坐標原點,直線
的斜率為
,直線
的斜率為
,求當
為何值時,直線
與以原點為圓心的定圓相切,并寫出此定圓的標準方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知F為拋物線C:y2=4x的焦點,過F作兩條互相垂直的直線l1 , l2 , 直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,則|AB|+|DE|的最小值為( )
A.16
B.14
C.12
D.10
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com