精英家教網 > 高中數學 > 題目詳情

【題目】我國古代數學名著《九章算術》中“開立圓術”曰:置積尺數,以十六乘之,九而一,所得開立方除之,即立圓徑,“開立圓術”相當于給出了已知球的體積V,求其直徑d的一個近似公式d≈ .人們還用過一些類似的近似公式.根據π=3.14159…..判斷,下列近似公式中最精確的一個是(
A.d≈
B.d≈
C.d≈
D.d≈

【答案】D
【解析】解:由V= ,解得d= 設選項中的常數為 ,則π= 選項A代入得π= =3.375;選項B代入得π= =3;
選項C代入得π= =3.14;選項D代入得π= =3.142857
由于D的值最接近π的真實值
故選D.
根據球的體積公式求出直徑,然后選項中的常數為 ,表示出π,將四個選項逐一代入,求出最接近真實值的那一個即可.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設集合M={x|x2+3x+2<0},集合 ,則M∪N=(
A.{x|x≥﹣2}
B.{x|x>﹣1}
C.{x|x<﹣1}
D.{x|x≤﹣2}

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知中心在原點,焦點在軸上,離心率為的橢圓過點.

(1)求橢圓方程;

(2)設不過原點O的直線,與該橢圓交于P、Q兩點,直線OP、OQ的斜率依次為,滿足,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】正三角形的邊長為,將它沿高翻折,使點與點間的距離為,此時四面體外接球表面積為

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax2+x﹣lnx,(a>0). (Ⅰ)求f(x)的單調區間;
(Ⅱ)設f(x)極值點為x0 , 若存在x1 , x2∈(0,+∞),且x1≠x2 , 使f(x1)=f(x2),求證:x1+x2>2x0

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點A(0,0),若函數f(x)的圖象上存在兩點B、C到點A的距離相等,則稱該函數f(x)為“點距函數”,給定下列三個函數:①y=﹣x+2;② ;③y=x+1.其中,“點距函數”的個數是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.如圖,在陽馬P﹣ABCD中,側棱PD⊥底面ABCD,且PD=CD,過棱PC的中點E,作EF⊥PB交PB于點F,連接DE,DF,BD,BE.
(1)證明:PB⊥平面DEF.試判斷四面體DBEF是否為鱉臑,若是,寫出其每個面的直角(只需寫出結論);若不是,說明理由;
(2)若面DEF與面ABCD所成二面角的大小為 ,求 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】17世紀日本數學家們對這個數學關于體積方法的問題還不了解,他們將體積公式“V=kD3”中的常數k稱為“立圓術”或“玉積率”,創用了求“玉積率”的獨特方法“會玉術”,其中,D為直徑,類似地,對于等邊圓柱(軸截面是正方形的圓柱叫做等邊圓柱)、正方體也有類似的體積公式V=kD3 , 其中,在等邊圓柱中,D表示底面圓的直徑;在正方體中,D表示棱長,假設運用此“會玉術”,求得的球、等邊圓柱、正方體的“玉積率”分別為k1 , k2 , k3=(
A. :1
B. :2
C.1:3:
D.1:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為調查高中生的數學成績與學生自主學習時間之間的相關關系,某重點高中數學教師對新入學的45名學生進行了跟蹤調查,其中每周自主做數學題的時間不少于15小時的有19人,余下的人中,在高三模擬考試中數學平均成績不足120分的占 ,統計成績后,得到如下的2×2列聯表:

分數大于等于120分

分數不足120分

合 計

周做題時間不少于15小時

4

19

周做題時間不足15小時

合 計

45

(Ⅰ)請完成上面的2×2列聯表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為“高中生的數學成績與學生自主學習時間有關”;
(Ⅱ)(i) 按照分層抽樣的方法,在上述樣本中,從分數大于等于120分和分數不足120分的兩組學生中抽取9名學生,設抽到的不足120分且周做題時間不足15小時的人數是X,求X的分布列(概率用組合數算式表示);
(ii) 若將頻率視為概率,從全校大于等于120分的學生中隨機抽取20人,求這些人中周做題時間不少于15小時的人數的期望和方差.
附:

P(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视