【題目】如圖,在四棱錐中,
是正方形,
平面
,
,
,
,
分別是
,
,
的中點.
()求四棱錐
的體積.
()求證:平面
平面
.
()在線段
上確定一點
,使
平面
,并給出證明.
【答案】(1)(2)見解析(3)當
為線段
的中點時,滿足使
平面
【解析】試題分析:(1)根據線面垂直確定高線,再根據錐體體積公式求體積(2)先尋找線線平行,根據線面平行判定定理得線面平行,最后根據面面平行判定定理得結論(3)由題意可得平面
,即
,取線段
的中點,則有
,而
,根據線面垂直判定定理得
平面
試題解析:()解:∵
平面
,
∴.
()證明:∵
,
分別是
,
的中點.
∴,
由正方形,
∴,
又平面
,∴
平面
,
同理可得: ,
可得平面
,
又,
∴平面平面
.
()解:當
為線段
的中點時,滿足使
平面
,
下面給出證明:取的中點
,連接
,
,
.
∵,
∴四點,
,
,
四點共面,由
平面
,
∴,
又,
,
∴平面
,
∴,
又為等腰三角形,
為斜邊的中點,
∴,
又,
∴平面
,即
平面
.
科目:高中數學 來源: 題型:
【題目】某縣相鄰兩鎮在一平面直角坐標系下的坐標為A(1,2)、B(4,0),一條河所在直線方程為l:x+2y-10=0,若在河邊l上建一座供水站P使之到A、B兩鎮的管道最省,問供水站P應建在什么地方?此時|PA|+|PB|為多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某食品的保鮮時間t(單位:小時)與儲藏溫度x(單位:℃)滿足函數關系t=且該食品在4℃的保鮮時間是16小時。已知甲在某日上午10時購買了該食品,并將其遺放在室外,且此日的室外溫度隨時間變化如圖所示。給出以下四個結論:
①該食品在6℃的保鮮時間是8小時;
②當x∈[-6,6]時,該食品的保鮮時間t隨著x增大而逐漸減少;
③到了此日13時,甲所購買的食品還在保鮮時間內;
④到了此日14時,甲所購買的食品已然過了保鮮時間。
其中,所有正確結論的序號是__________。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設y=f(x)是二次函數,方程f(x)=0有兩個相等的實根,且f′(x)=2x+2.
(1)求y=f(x)的表達式;
(2)求y=f(x)的圖象與兩坐標軸所圍成封閉圖形的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a>0,設p:實數x滿足x2﹣4ax+3a2<0,q:實數x滿足(x﹣3)2<1.
(1)若a=1,且p∧q為真,求實數x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數的圖象經過點
,且函數
=
是偶函數
(1)求的解析式;
(2)已知,求函數
在
的最大值和最小值
(3)函數的圖象上是否存在這樣的點,其橫坐標是正整數,縱坐標是一個完全平方數?如果存在,求出這樣的點的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在三棱柱ABC-A1B1C1中,△ABC與△A1B1C1都為正三角形且AA1⊥面ABC,F、F1分別是AC,A1C1的中點.
求證:(1)平面AB1F1∥平面C1BF;
(2)平面AB1F1⊥平面ACC1A1.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com