【題目】已知函數 .若
,求
的值;當
時,求
的單調區間.
科目:高中數學 來源: 題型:
【題目】請閱讀下列材料:若兩個正實數a1 , a2滿足a12+a22=1,那么a1+a2≤ .
證明:構造函數f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因為對一切實數x , 恒有f(x)≥0,所以Δ≤0,從而得4(a1+a2)2-8≤0,所以a1+a2≤ .
根據上述證明方法,若n個正實數滿足a12+a22+…+an2=1時,你能得到的結論為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列各組函數中,表示同一個函數的是( )
A.f(x)=2x+1與g(x)=
B.y=x﹣1與y=
C.y= 與y=x+3
D.f(x)=1與g(x)=1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)對任意x∈R,恒有(f(x)﹣sinx)(f(x)﹣cosx)=0成立,則下列關于函數 y=f(x)的說法正確的是( )
A.最小正周期是2π
B.值域是[﹣1,1]
C.是奇函數或是偶函數
D.以上都不對
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,幾何體ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F,G分別為EB和AB的中點.
(1)求證:FD∥平面ABC;
(2)求二面角B﹣FC﹣G的正切值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com