【題目】已知函數。
(1)若,試判斷
的零點的個數。
(2)若恒成立,求
的取值范圍。
【答案】(1)見解析;(2) .
【解析】試題分析:(1)若,對函數
求導,根據導函數的正負,可得函數
的單調性,從而可判斷
的零點的個數;(2)法一:
恒成立等價于
恒成立,令
,設
,則
,再令
,利用導數研究
的單調性,從而可得到
的單調性,即可求得
的取值范圍;法二:構造令
,得到
,令
,利用導數研究
的單調性,即可得
的最小值,從而可得
的取值范圍.
試題解析:(1)若,
,
.
∴當,
,
單調遞減;當
,
,
單調遞增.
∴.
∴函數的零點個數為0
(2)若,變形得到:
.
法一:令,得到
.
設,則
.
令,則
,可得
在
上單調遞增,在
上單調遞減.
∴,則
.
∴在
上單調遞減
當,
,則
.
∴.
法二:令,得到
,
令,則
,
,
∴在
上單調遞減,在
上單調遞增.
∴,即
在
上單調遞增
∴當時,
,即
,
∴
科目:高中數學 來源: 題型:
【題目】隨著互聯網的快速發展,基于互聯網的共享單車應運而生,某市場研究人員為了了解共享單車運營公司的經營狀況,對該公司最近六個月的市場占有率進行了統計,并繪制了相應的折線圖:
(1)由折線圖可以看出,可用線性回歸模型擬合月度市場占有率與月份代碼
之間的關系,求
關于
的線性回歸方程,并
預測公司2017年4月的市場占有率;
(2)為進一步擴大市場,公司擬再采購一批單車,現有采購成本分別為元/輛和1200元/輛的
、
兩款車型可供選擇,按規定每輛單車最
多使用4年,但由于多種原因(如騎行頻率等)會導致單車使用壽命各不相同,考慮到公司運營的經濟效益,該公司決定先對這兩款車型的單車各100輛進行科學模擬測試,得到兩款單車使用壽命的頻數表如右表:經測算,平均每輛單車每年可以帶來收入500元,不考慮除采購成本之外的其他成本,假設每輛單車的使用壽命都是整數年,且以頻率作為每輛單車使用壽命的概率,如果你是公司的負責人,以每輛單車產生利潤的期望值為決策依據,你會選擇采購哪款車型?
參考公式:回歸直線方程為,其中
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地有一企業2007年建廠并開始投資生產,年份代號為7,2008年年份代號為8,依次類推.經連續統計9年的收入情況如下表(經數據分析可用線性回歸模型擬合與
的關系):
年份代號( | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
當年收入( | 13 | 14 | 18 | 20 | 21 | 22 | 24 | 28 | 29 |
(Ⅰ)求關于
的線性回歸方程
;
(Ⅱ)試預測2020年該企業的收入.
(參考公式:
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在梯形中,
,
.
,且
平面
,
,點
為
上任意一點.
(1)求證: ;
(2)點在線段
上運動(包括兩端點),若平面
與平面
所成的銳二面角為60°,試確定點
的位置.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的右頂點為A,上頂點為B.已知橢圓的離心率為
,
.
(1)求橢圓的方程;
(2)設直線與橢圓交于
,
兩點,
與直線
交于點M,且點P,M均在第四象限.若
的面積是
面積的2倍,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市舉行“中學生詩詞大賽”,分初賽和復賽兩個階段進行,規定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區間內,其頻率分布直方圖如圖.
(Ⅰ)求獲得復賽資格的人數;
(Ⅱ)從初賽得分在區間的參賽者中,利用分層抽樣的方法隨機抽取
人參加學校座談交流,那么從得分在區間
與
各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的人中,選出
人參加全市座談交流,設
表示得分在區間
中參加全市座談交流的人數,求
的分布列及數學期望E(X).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com