【題目】為響應綠色出行,前段時間大連市在推出“共享單車”后,又推出“新能源分時租賃汽車”,其中一款新能源分時租賃汽車,每次租車收費的標準由兩部分組成:①根據行駛里程按1元/公里計費;②行駛時間不超過40分鐘時,按0.12元/分鐘計費:超出部分按0.20元/分鐘計費,己知張先生家離上班地點15公里,每天租用該款汽車上、下班各一次.由于堵車、紅路燈等因素,每次路上開車花費的時間(分鐘)是一個隨機變量.現統計了100次路上開車花費時間,在各時間段內的頻數分布情況如下表所示:
時間 |
|
|
|
|
頻數 | 4 | 36 | 40 | 20 |
將各時間段發生的頻率視為概率,每次路上開車花費的時間視為用車的時間,范圍為分鐘.
(1)寫出張先生一次租車費用(元)與用車時間
(分鐘)的函數關系式:
(2)若公司每月給900元的車補,請估計張先生每月(按24天計算)的車補是否足夠上下班租用新能源分時租賃汽車?并說明理由.(同一時段,用該區間的中點值作代表)
科目:高中數學 來源: 題型:
【題目】為調查乘客的候車情況,公交公司在某為臺的名候車乘客中隨機抽取
人,將他們的候車時間(單位:分鐘)作為樣本分成
組,如下表所示:
組別 | 候車時間 | 人數 |
一 | ||
二 | ||
三 | ||
四 | ||
五 |
(1)求這名乘客的平均候車時間;
(2)估計這名候車乘客中候車時間少于
分鐘的人數;
(3)若從上表第三、四組的人中隨機抽取
人作進一步的問卷調查,求抽到的兩人恰好來自不同組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ )的周期為π,且圖象上的一個最低點為M(
).
(1)求f(x)的解析式及單調遞增區間;
(2)當x∈[0,]時,求f(x)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點、
為雙曲線
的左、右焦點,過
作垂直于
軸的直線,在
軸上方交雙曲線
于點
,且
,圓
的方程是
.
(1)求雙曲線的方程;
(2)過雙曲線上任意一點
作該雙曲線兩條漸近線的垂線,垂足分別為
、
,求
的值;
(3)過圓上任意一點
作圓
的切線
交雙曲線
于
、
兩點,
中點為
,求證:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】把兩個全等的正三棱錐的底面粘在一起,在所得的六面體中,所有二面角相等,而頂點可分成兩類:在第一類中,每一個頂點發出三條棱;而在第二類頂點中,每一個頂點發出四條棱。試求連結兩個第一類頂點的線段長與連結兩個第二類頂點的線段長之比。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的部分圖象如圖所示,
分別是圖象的最高點與相鄰的最低點,且
,
,
為坐標原點.
(1)求函數的解析式;
(2)將函數的圖象向左平移1個單位后得到函數
的圖象,求函數
的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有邊長分別3,4,5的三角形兩個,邊長分別4,5,的三角形四個,邊長分別為
,4,5的三角形六個.用上述三角形為面,可以拼成______個四面體.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,求該函數的定義域;
(2)當時,如果
對任何
都成立,求實數
的取值范圍;
(3)若,將函數
的圖像沿
軸方向平移,得到一個偶函數
的圖像,設函數
的最大值為
,求
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com