【題目】設四面體的六條棱的長分別為1,1,1,1, 和a,且長為a的棱與長為
的棱異面,則a的取值范圍是( )
A.(0, )
B.(0, )
C.(1, )
D.(1, )
【答案】A
【解析】解:設四面體的底面是BCD,BC=a,BD=CD=1,頂點為A,AD=
在三角形BCD中,因為兩邊之和大于第三邊可得:0<a<2 (1)
取BC中點E,∵E是中點,直角三角形ACE全等于直角DCE,
所以在三角形AED中,AE=ED=
∵兩邊之和大于第三邊
∴ <2
得0<a<
(負值0值舍)(2)
由(1)(2)得0<a< .
故選:A.
【考點精析】根據題目的已知條件,利用棱錐的結構特征和異面直線的判定的相關知識可以得到問題的答案,需要掌握側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方;過平面外一點與平面內一點的直線和平面內不經過該點的直線是異面直線.(不在任何一個平面內的兩條直線).
科目:高中數學 來源: 題型:
【題目】某種商品原來每件售價為25元,年銷售量8萬件.
(1)據市場調查,若價格每提高1元,銷售量將相應減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?
(2)為了擴大該商品的影響力,提高年銷售量.公司決定明年對該商品進行全面技術革新和營銷策略改革,并提高定價到元.公司擬投入
萬元作為技改費用,投入50萬元作為固定宣傳費用,投入
萬元作為浮動宣傳費用.試問:當該商品明年的銷售量a至少應達到多少萬件時,才可能使明年的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的單調區間;
(Ⅱ)已知f(x)在x=1處取得極大值.求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《算法統宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數是上一層燈數的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了評估A,B兩家快遞公司的服務質量,從兩家公司的客戶中各隨機抽取100名客戶作為樣本,進行服務質量滿意度調查,將A,B兩公司的調查得分分別繪制成頻率分布表和頻率分布直方圖.規定分以下為對該公司服務質量不滿意.
分組 | 頻數 | 頻率 |
0.4 | ||
合計 |
(Ⅰ)求樣本中對B公司的服務質量不滿意的客戶人數;
(Ⅱ)現從樣本對A,B兩個公司服務質量不滿意的客戶中,隨機抽取2名進行走訪,求這兩名客戶都來自于B公司的概率;
(Ⅲ)根據樣本數據,試對兩個公司的服務質量進行評價,并闡述理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】祖暅是南北朝時代的偉大科學家,公元五世紀末提出體積計算原理,即祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任何一個平面所截,如果截面面積恒相等,那么這兩個幾何體的體積一定相等.設A,B為兩個同高的幾何體,A,B的體積不相等,
A,B在等高處的截面積不恒相等.根據祖暅原理可知,p是q的( )
A. 充分不必要條件 B. 必要不充分條件
C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=4cos(ωx﹣ )sinωx﹣cos(2ωx+π),其中ω>0.
(1)求函數y=f(x)的值域
(2)若f(x)在區間 上為增函數,求ω的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在上的函數
滿足
.當
時,
,當
時,
,則f(1)+f(2)+…+f(2015)=( )
A. 333 B. 336 C. 1678 D. 2015
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是()
A. 銳角是第一象限的角,所以第一象限的角都是銳角;
B. 如果向量,則
;
C. 在中,記
,
,則向量
與
可以作為平面ABC內的一組基底;
D. 若,
都是單位向量,則
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com