精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)= (a,b∈R)在點 (2,f(2)) 處切線的斜率為﹣ ﹣ln 2,且函數過點(4, ). (Ⅰ)求a、b 的值及函數 f (x)的單調區間;
(Ⅱ)若g(x)= (k∈N*),對任意的實數x0>1,都存在實數x1 , x2滿足0<x1<x2<x0 , 使得f(x0)=f(x1)=f(x2),求k 的最大值.

【答案】解:(Ⅰ)∵函數f(x)= (a,b∈R), ∴f(x)定義域為(0,1)∪(1,+∞),

∵函數f(x)在點 (2,f (2)) 處切線的斜率為﹣ ﹣ln 2,且函數過點(4, ).

,


,則 ,
h(x)在(0,1)上單調遞增,在(1,+∞)上單調遞減,
h(x)≤h(1)=﹣1<0
恒成立,
∴f(x)在(0,1)上單調遞減,在(1,+∞)上單調遞減.
(Ⅱ)由題得,原問題轉化為f(x)<g(x)在x∈(0,1)上恒成立,
f(x)>g(x)在x∈(1,+∞)上恒成立,
在x∈(0,1)∪(1,+∞)上恒成立,
,
∴φ(x)在(0,1),(1,k)上單調遞減,(k,+∞)上單調遞增,
當x∈(0,1)時,φ(x)>φ(1)=1>0…(9分)
當x∈(1,+∞)時,φ(x)≥φ(k)=lnk﹣k+2,∴lnk﹣k+2>0
記Φ(k)=lnk﹣k+2,則 恒成立,
Φ(k)在k∈[1,+∞)上是減函數,
Φ(3)=ln3﹣1>0,Φ(4)=ln4﹣2<0,
∴k的最大值為3.
【解析】(Ⅰ)先求出f(x)定義域為(0,1)∪(1,+∞), ,由函數f(x)在點 (2,f (2)) 處切線的斜率為﹣ ﹣ln 2,且函數過點(4, ),列出方程組求出a,b,從而 ,則 ,利用導數性質能求出函數 f (x)的單調區間.(Ⅱ)原問題轉化為f(x)<g(x)在x∈(0,1)上恒成立,f(x)>g(x)在x∈(1,+∞)上恒成立,從而 在x∈(0,1)∪(1,+∞)上恒成立,由此利用導數性質能求出k的最大值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】拋擲三枚不同的具有正、反兩面的金屬制品A1、A2、A3 , 假定A1正面向上的概率為 ,A2正面向上的概率為 ,A3正面向上的概率為t(0<t<1),把這三枚金屬制品各拋擲一次,設ξ表示正面向上的枚數.
(1)求ξ的分布列及數學期望Eξ(用t表示);
(2)令an=(2n﹣1)cos( Eξ)(n∈N+),求數列{an}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設集合A={(x,y)||x|+|y|≤2},B={(x,y)∈A|y≤x2},從集合A中隨機地取出一個元素P(x,y),則P(x,y)∈B的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國古代有著輝煌的數學研究成果.《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、…、《輯古算經》等算經十書,有著十分豐富多彩的內容,是了解我國古代數學的重要文獻.這10部專著中有7部產生于魏晉南北朝時期.某中學擬從這10部名著中選擇2部作為“數學文化”校本課程學習內容,則所選2部名著中至少有一部是魏晉南北朝時期的名著的概率為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x3+ax2+bx+c有兩個極值點x1 , x2 , 若x2<f(x1)<x1 , 則關于x的方程3(f(x))2+2af(x)+b=0的不同實根個數可能為(
A.3,4,5
B.4,5,6
C.2,4,5
D.2,3,4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出定義:若 (其中m為整數),則m叫做離實數x最近的整數,記作{x},即{x}=m在此基礎上給出下列關于函數f(x)=|x﹣{x}|的四個命題: ① ;②f(3.4)=﹣0.4;
;④y=f(x)的定義域為R,值域是 ;
則其中真命題的序號是(
A.①②
B.①③
C.②④
D.③④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C,F為⊙O上的點,CA是∠BAF的角平分線,過點C作CD⊥AF交AF的延長線于D點,CM⊥AB,垂足為點M.
(1)求證:DC是⊙O的切線;
(2)求證:AMMB=DFDA.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A、B、C的對邊分別為a、b、c,a2=b2+c2+bc. (Ⅰ)求角A的大。
(Ⅱ)若a=2 ,b=2,求c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體ABCDM中,△BCD是等邊三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD.
(Ⅰ)求證:CD⊥AM;
(Ⅱ)若AM=BC=2,求直線AM與平面BDM所成角的正弦值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视