【題目】某公司即將推車一款新型智能手機,為了更好地對產品進行宣傳,需預估市民購買該款手機是否與年齡有關,現隨機抽取了50名市民進行購買意愿的問卷調查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強,調查結果用莖葉圖表示如圖所示.
(1)根據莖葉圖中的數據完成列聯表,并判斷是否有95%的把握認為市民是否購買該款手機與年齡有關?
(2)從購買意愿弱的市民中按年齡進行分層抽樣,共抽取5人,從這5人中隨機抽取2人進行采訪,求這2人都是年齡大于40歲的概率.
附: .
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
【答案】(1)詳見解析;(2) .
【解析】試題分析:(1)由莖葉圖能完成 列聯表,由列聯表求出
,從而得到沒有
的把握認為市民是否購買該款手機與年齡有關.
(2)購買意愿弱的市民共有20人,抽樣比例為 ,所以年齡在20~40歲的抽取了2人,記為
,年齡大于40歲的抽取了3人,記為
,列出所有可能的情況,由古典概型可求其概率.
試題解析:(1)由莖葉圖可得:
由列聯表可得: .
所以,沒有95%的把握認為市民是否購買該款手機與年齡有關.
(2)購買意愿弱的市民共有20人,抽樣比例為,
所以年齡在20~40歲的抽取了2人,記為
年齡大于40歲的抽取了3人,記為,
從這5人中隨機抽取2人,所有可能的情況為,
,
,
,
,
,
,
,
,
,共10種,
其中2人都是年齡大于40歲的有,
,
3種,
所以概率為.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2+2x+c(a、c∈N*)滿足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)若對任意的實數x∈[ ,
],都有f(x)﹣2mx≤1成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,從參加環保知識競賽的學生中抽出40名,將其成績(均為整數)整理后畫出的頻率分布直方圖如下:
觀察圖形,回答下列問題:
(1)估計這次環保知識競賽成績的中位數;
(2)從成績是80分以上(包括80分)的學生中選兩人,求他們在同一分數段的概率?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從參加高一年級期中考試的學生中隨機抽取60名學生,將其數學成績(均為整數)分成六段[40,50),[50,60)…[90,100]后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求分數在[70,80)內的頻率,并補全這個頻率分布直方圖;
(2)用分層抽樣的方法在分數段為[60,80)的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人在分數段[70,80)的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(x+1),g(x)=loga(4﹣2x),a>0且a≠1.
(1)求函數y=f(x)﹣g(x)的定義域;
(2)求使不等式f(x)>g(x)成立的實數x的取值范圍;
(3)求函數y=2f(x)﹣g(x)﹣f(1)的零點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業招聘中,依次進行A科、B科考試,當A科合格時,才可考B科,且兩科均有一次補考機會,兩科都合格方通過.甲參加招聘,已知他每次考A科合格的概率均為 ,每次考B科合格的概率均為
.假設他不放棄每次考試機會,且每次考試互不影響.
(1)求甲恰好3次考試通過的概率;
(2)記甲參加考試的次數為ξ,求ξ的分布列和期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com