已知橢圓上的點
到左右兩焦點
的距離之和為
,離心率為
.
(1)求橢圓的方程;
(2)過右焦點的直線
交橢圓于
兩點,若
軸上一點
滿足
,求直線
的斜率
的值.
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,以坐標原點
為極點,
軸的非負半軸為極軸建立極坐標系.已知曲線
的極坐標方程為
,直線
的參數方程為
為參數,
).
(1)化曲線的極坐標方程為直角坐標方程;
(2)若直線經過點
,求直線
被曲線
截得的線段
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓C的中心在原點,焦點在x軸上,離心率為,且過點
,點A、B分別是橢圓C長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于
軸上方,
.
(1)求橢圓C的方程;
(2)求點P的坐標;
(3)設M是直角三角PAF的外接圓圓心,求橢圓C上的點到點M的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓:
的離心率為
,點
為其下焦點,點
為坐標原點,過
的直線
:
(其中
)與橢圓
相交于
兩點,且滿足:
.
(1)試用 表示
;
(2)求 的最大值;
(3)若 ,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點分別是橢圓
的左、右焦點, 點
在橢圓上
上.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設直線若
、
均與橢圓
相切,試探究在
軸上是否存在定點
,點
到
的距離之積恒為1?若存在,請求出點
坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓的右頂點為A(2,0),點P(2e,
)在橢圓上(e為橢圓的離心率).
(1)求橢圓的方程;
(2)若點B,C(C在第一象限)都在橢圓上,滿足,且
,求實數λ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點在拋物線
:
上.
(1)若的三個頂點都在拋物線
上,記三邊
,
,
所在直線的斜率分別為
,
,
,求
的值;
(2)若四邊形的四個頂點都在拋物線
上,記四邊
,
,
,
所在直線的斜率分別為
,
,
,
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
給定橢圓,稱圓心在坐標原點O,半徑為
的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個焦點分別是
.
(1)若橢圓C上一動點滿足
,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點作直線l與橢圓C只有一個交點,且截橢圓C的“伴隨圓”所得弦長為
,求P點的坐標;
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點到過兩點
的直線的最短距離
.若存在,求出a,b的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com