精英家教網 > 高中數學 > 題目詳情

 設M是△△ABC內一點,且,其中m、n、p分別是的最小值是(    )

A.8                B.9                C.16               D.18

 

【答案】

 D  

解析:由條件可得,,∴,而,∴,∴,當且僅當時等號成立.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知O為平面內一定點,設條件p:動點M滿足
OM
=
OA
+λ(
AB
+
AC
),λ∈R;條件q:點M的軌跡通過△ABC的重心.則條件p是條件q的( 。
A、充要條件
B、充分不必要條件
C、必要不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

已知O為平面內一定點,設條件p:動點M滿足數學公式=數學公式+λ(數學公式+數學公式),λ∈R;條件q:點M的軌跡通過△ABC的重心.則條件p是條件q的


  1. A.
    充要條件
  2. B.
    充分不必要條件
  3. C.
    必要不充分條件
  4. D.
    既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知O為平面內一定點,設條件p:動點M滿足
OM
=
OA
+λ(
AB
+
AC
),λ∈R;條件q:點M的軌跡通過△ABC的重心.則條件p是條件q的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

在直徑為AB的半圓形區域內,劃出一個三角形區域,使三角形的一邊為AB,頂點C在半圓上,其他兩邊分別為6米和8米.先要建造一個內接于△ABC的矩形水池DEFN,其中,DE在AB上,圖2-5-20的設計方案是使AC=8米,BC=6米.

圖2-5-20

(1)求△ABC的邊AB上的高h.

(2)設DN=x,當x取何值時,水池DEFN的面積最大?

(3)實際施工時,發現在AB上距B點1.85米的M處有一棵大樹,問:這棵大樹是否位于最大矩形水池的邊上?如果為保護大樹,請設計出另外的方案,使內接于滿足條件的三角形中欲建的最大矩形水池能避開大樹.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年陜西省寶雞中學高三(上)第一次月考數學試卷(理科)(解析版) 題型:選擇題

已知O為平面內一定點,設條件p:動點M滿足=+λ(+),λ∈R;條件q:點M的軌跡通過△ABC的重心.則條件p是條件q的( )
A.充要條件
B.充分不必要條件
C.必要不充分條件
D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视