科目:高中數學 來源:2014年高考數學全程總復習課時提升作業三十七第六章第三節練習卷(解析版) 題型:選擇題
若不等式組所表示的平面區域被直線y=kx+2分為面積相等的兩部分,則k的值為( )
(A) (B)
(C)
(D)2
查看答案和解析>>
科目:高中數學 來源:2014年高考數學全程總復習課時提升作業七十八選修4-4第二節練習卷(解析版) 題型:解答題
以直角坐標系的原點為極點,x軸正半軸為極軸,并在兩種坐標系中取相同的長度單位.已知直線l的極坐標方程為ρsin(θ-)=6,圓C的參數方程為
(θ為參數),求直線l被圓C截得的弦長.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學全程總復習課時提升作業七十五選修4-2第二節練習卷(解析版) 題型:解答題
已知M=.
(1)求逆矩陣M-1.
(2)若向量X滿足MX=,試求向量X.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學全程總復習課時提升作業七十二第十章第九節練習卷(解析版) 題型:解答題
一個口袋裝有n個紅球(n≥5且n∈N)和5個白球,一次摸獎從中摸2個球(每次摸獎后放回),2個球顏色不同則為中獎.
(1)試用n表示一次摸獎中獎的概率.
(2)若n=5,求3次摸獎的中獎次數ξ=1的概率及數學期望.
(3)記3次摸獎恰有1次中獎的概率為P,當n取多少時,P最大?
查看答案和解析>>
科目:高中數學 來源:2014年高考數學全程總復習課時提升作業七十二第十章第九節練習卷(解析版) 題型:填空題
某畢業生參加人才招聘會,分別向甲、乙、丙三個公司投遞了個人簡歷.假定該畢業生得到甲公司面試的概率為,得到乙、丙兩公司面試的概率均為p,且三個公司是否讓其面試是相互獨立的.記X為該畢業生得到面試的公司個數.若P(X=0)=
,則隨機變量X的數學期望E(X)= .
查看答案和解析>>
科目:高中數學 來源:2014年高考數學全程總復習課時提升作業七十三第十章第十節練習卷(解析版) 題型:解答題
某班同學利用國慶節進行社會實踐,對[25,55]歲的人群隨機抽取n人進行了一次生活習慣是否符合低碳觀念的調查,若生活習慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統計表和各年齡段人數頻率分布直方圖:
組 數 | 分 組 | 低碳族的人數 | 占本組的頻率 |
第一組 | [25,30) | 120 | 0.6 |
第二組 | [30,35) | 195 | p |
第三組 | [35,40) | 100 | 0.5 |
第四組 | [40,45) | a | 0.4 |
第五組 | [45,50) | 30 | 0.3 |
第六組 | [50,55] | 15 | 0.3 |
(1)補全頻率分布直方圖并求n,a,p的值.
(2)為調查該地區的年齡與生活習慣和是否符合低碳觀念有無關系,調查組按40歲以下為青年,40歲以上(含40歲)為老年分成兩組,請你先完成下面2×2列聯表,并回答是否有99%的把握認為該地區的生活習慣是否符合低碳觀念與人的年齡有關.
參考公式:χ2=
P(χ2≥x0) | 0.050 | 0.010 | 0.001 |
x0 | 3.841 | 6.635 | 10.828 |
年齡組
是否低碳族 | 青 年 | 老 年 | 總 計 |
低碳族 |
|
|
|
非低碳族 |
|
|
|
總計 |
|
|
|
查看答案和解析>>
科目:高中數學 來源:2014年高中數學全國各省市理科導數精選22道大題練習卷(解析版) 題型:解答題
已知向量,
,
(
為常數,
是自然對數的底數),曲線
在點
處的切線與
軸垂直,
.
(Ⅰ)求的值及
的單調區間;
(Ⅱ)已知函數 (為正實數),若對于任意
,總存在
, 使得
,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com