【題目】已知函數f(x)=|x﹣a|﹣ +a,x∈[1,6],a∈R.
(1)若a=1,試判斷并證明函數f(x)的單調性;
(2)當a∈(1,6)時,求函數f(x)的最大值的表達式M(a).
【答案】
(1)
解:∵a=1,x∈∈[1,6],
∴f(x)=|x﹣1|﹣ +1=x﹣
,
∴f′(x)=1+ >0,
∴f(x)是增函數;
(2)
解:因為1<a<6,所以f(x)= ,
①當1<a≤3時,f(x)在[1,a]上是增函數,在[a,6]上也是增函數,
所以當x=6時,f(x)取得最大值為 .
②當3<a<6時,f(x)在[1,3]上是增函數,在[3,a]上是減函數,在[a,6]上是增函數,
而f(3)=2a﹣6,f(6)= ,
當3<a≤ 時,2a﹣6≤
,當x=6時,f(x)取得最大值為
.
當 ≤a<6時,2a﹣6>
,當x=3時,f(x)取得最大值為2a﹣6.
綜上得,M(a)=
【解析】(1)可求得f(x)=x﹣ ,利用f′(x)>0即可判斷其單調性;(2)由于1<a<6,可將f(x)化為f(x)=
,分1<a≤3與3<a<6討論函數的單調性,從而求得函數f(x)的最大值的表達式M(a).
【考點精析】通過靈活運用函數單調性的判斷方法和函數的最值及其幾何意義,掌握單調性的判定法:①設x1,x2是所研究區間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;利用二次函數的性質(配方法)求函數的最大(。┲;利用圖象求函數的最大(。┲;利用函數單調性的判斷函數的最大(小)值即可以解答此題.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣2ax+5(a>1).
(1)若函數f(x)的定義域和值域均為[1,a],求實數a的值;
(2)若f(x)在區間(﹣∞,2],上是減函數,且對任意的x1 , x2∈[1,a+1],總有|f(x1)﹣f(x2)|≤4,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分) 某中學的環保社團參照國家環境標準制定了該校所在區域空氣質量指數與空氣質量等級對應關系如下表(假設該區域空氣質量指數不會超過):
空氣質量指數 | ||||||
空氣質量等級 |
|
|
|
|
|
|
該社團將該校區在年
天的空氣質量指數監測數據作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率.
(Ⅰ)請估算年(以
天計算)全年空氣質量優良的天數(未滿一天按一天計算);
(Ⅱ)該校年
月
、
日將作為高考考場,若這兩天中某天出現
級重度污染,需要凈化空氣費用
元,出現
級嚴重污染,需要凈化空氣費用
元,記這兩天凈化空氣總費用為
元,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在坐標原點
,焦點在
軸上,橢圓
的短軸端點和焦點所組成的四邊形為正方形,且橢圓
上任意一點到兩個焦點的距離之和為
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線與橢圓
相交于
兩點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線x2=y+1上一定點A(﹣1,0)和兩動點P,Q,當PA⊥PQ時,點Q的橫坐標的取值范圍是( )
A.(﹣∞,﹣3]
B.[1,+∞)
C.[﹣3,1]
D.(﹣∞,﹣3]∪[1,+∞)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com