精英家教網 > 高中數學 > 題目詳情
(2013•鷹潭一模)已知函數f(x)=2
3
cos2x+2sinxcosx-m(x∈R).
(1)求函數f(x)的最小正周期和單調遞增區間;
(2)x∈[0,
π
2
]時,函數f(x)的值域為[-
3
,2],求實數m的值.
分析:(1)利用二倍角、輔助角公式化簡函數,即可得到函數f(x)的最小正周期和單調遞增區間;
(2)整體思維,求出x∈[0,
π
2
]時,函數f(x)的值域,結合條件,即可求實數m的值.
解答:解:(1)∵f(x)=2
3
cos2x+2sinxcosx-m=2sin(2x+
π
3
)+
3
-m
…(3分)
∴函數f(x)的最小正周期為T=π.
2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,得kπ-
12
≤x≤kπ+
π
12
,k∈Z

∴函數f(x)的單調增區間為[kπ-
12
,kπ+
π
12
](k∈Z)
…(6分)
(2)假設存在實數m符合題意,則
∵x∈[0,
π
2
],∴2x+
π
3
∈[
π
3
3
],∴sin(2x+
π
3
)∈[-
3
2
,1]
f(x)=2sin(2x+
π
3
)+
3
-m
∈[m,2+m+
3
]
又∵f(x)∈[-
3
,2]

∴m=
3
…(12分)
點評:本題考查三角函數的化簡,考查三角函數的性質,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•鷹潭一模)設l、m、n表示三條直線,α、β、r表示三個平面,則下面命題中不成立的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•鷹潭一模)A﹑B﹑C是直線l上的三點,向量
OA
OB
OC
滿足:
OA
-[y+2f'(1)]•
OB
+ln(x+1)•
OC
=
0
;
(Ⅰ)求函數y=f(x)的表達式;          
(Ⅱ)若x>0,證明f(x)>
2x
x+2
;
(Ⅲ)當
1
2
x2≤f(x2)+m2-2bm-3
時,x∈[-1,1]及b∈[-1,1]都恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•鷹潭一模)定義域為R的偶函數f(x)滿足對?x∈R,有f(x+2)=f(x)-f(1),且當x∈[2,3]時,f(x)=-2x2+12x-18,若函數y=f(x)-loga(|x|+1)在(0,+∞)上至多三個零點,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•鷹潭一模)復數z=
2+i
1-i
-i(2-i)
在復平面對應的點在(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•鷹潭一模)已知全集U=R,集合A={x|y=log(x2-x-6),x∈R},B={x|
5
x+1
<1,x∈R}
,則集合A∩?RB=( 。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视