精英家教網 > 高中數學 > 題目詳情

設a、b、c為一個三角形的三邊,S=(a+b+c),且S2=2ab,求證:S<2a.

 

思路解析:條件與結論之間的關系不明顯,可先結合條件把結論作適當轉化,把S<2a轉化為b+c<3a,結合S2=2ab轉化為b<S.

證明:要證S<2a,由于S2=2ab,只需證S<,即b<S,只需證2b<a+b+c,即b<a+c.

    由于a、b、c為一個三角形的三邊,所以上式成立,于是原命題成立.


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•眉山一模)設函數f(x)對其定義域內的任意實數x1x2都有f(
x1+x2
2
)≥
f(x1)+f(x2)
2
,則稱函數f(x)為上凸函數. 若函數f(x)為上凸函數,則對定義域內任意x1、x2、x3,…,xn都有f(
x1+x2+…+xn
n
)≥
f(x1)+f(x2)+…+f(xn)
n
(當x1=x2=x3=…=xn時等號成立),稱此不等式為琴生不等式,現有下列命題:
①f(x)=lnx(x>0)是上凸函數;
②二次函數f(x)=ax2+bx+c(a≠0)是上凸函數的充要條件是a>0;
③f(x)是上凸函數,若A(x1,f(x1)),B(x2,f(x2))是f(x)圖象上任意兩點,點C在線段AB上,且
AC
CB
,則f(
x1x2
1+λ
)≥
f(x1)+λf(x2)
1+λ
;
④設A,B,C是一個三角形的三個內角,則sinA+sinB+sinC的最大值是
3
3
2

其中,正確命題的序號是
①③④
①③④
(寫出所有你認為正確命題的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:047

a,bc為某一個三角形的三條邊,abc,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

a、bc為正數,則a+、b+、c+這三個數

A.都不大于2                                                  B.至少有一個不大于2

C.都不小于2                                                  D.至少有一個不小于2

查看答案和解析>>

科目:高中數學 來源: 題型:

設a、b、c為某一個三角形的三條邊,a≥b≥c,求證:

(1)c(a+b-c)≥b(c+a-b)≥a(b+c-a);

(2)a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤3abc.

查看答案和解析>>

科目:高中數學 來源:2012年四川省眉山市高考數學一模試卷(理科)(解析版) 題型:解答題

設函數f(x)對其定義域內的任意實數,則稱函數f(x)為上凸函數. 若函數f(x)為上凸函數,則對定義域內任意x1、x2、x3,…,xn都有(當x1=x2=x3=…=xn時等號成立),稱此不等式為琴生不等式,現有下列命題:
①f(x)=lnx(x>0)是上凸函數;
②二次函數f(x)=ax2+bx+c(a≠0)是上凸函數的充要條件是a>0;
③f(x)是上凸函數,若A(x1,f(x1)),B(x2,f(x2))是f(x)圖象上任意兩點,點C在線段AB上,且;
④設A,B,C是一個三角形的三個內角,則sinA+sinB+sinC的最大值是
其中,正確命題的序號是    (寫出所有你認為正確命題的序號).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视