【題目】要得到函數y=﹣sin2x+ 的圖象,只需將y=sinxcosx的圖象( )
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位
【答案】B
【解析】解:∵函數y=﹣sin2x+ =
cos2x
又∵y=sinxcosx= sin2x=
cos(2x+
)
∴只需將y=sinxcosx= sin2x=
cos(2x+
)的圖象向右平移
個單位即可得到函數y=﹣sin2x+
=
cos2x的圖象.
故選:B.
【考點精析】利用函數y=Asin(ωx+φ)的圖象變換對題目進行判斷即可得到答案,需要熟知圖象上所有點向左(右)平移個單位長度,得到函數
的圖象;再將函數
的圖象上所有點的橫坐標伸長(縮短)到原來的
倍(縱坐標不變),得到函數
的圖象;再將函數
的圖象上所有點的縱坐標伸長(縮短)到原來的
倍(橫坐標不變),得到函數
的圖象.
科目:高中數學 來源: 題型:
【題目】某校高一(1)班全體男生的一次數學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖所示,據此解答如下問題:
(1)求該班全體男生的人數;
(2)求分數在之間的男生人數,并計算頻率公布直方圖中
之間的矩形的高;
(3)根據頻率分布直方圖,估計該班全體男生的數學平均成績(同一組中的數據用該組區間的中點值代表).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·湖南)如下圖,直三棱柱ABC-A1B1C1的底面是邊長為2的正三角形,E、F分別是BC、CC1的中點.
(1)證明:平面AEF⊥平面B1BCC1;
(2)若直線A1C與平面A1ABB1所成的角為45°,求三棱錐F-AEC的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的導函數f′(x)=2+sinx,且f(0)=﹣1,數列{an}是以 為公差的等差數列,若f(a2)+f(a3)+f(a4)=3π,則
=( )
A.2016
B.2015
C.2014
D.2013
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示程序框圖是用“二分法”求方程的近似解的算法,有下列判斷:
①若則輸出的值在
之間;
②若則程序執行完畢將沒有值輸出;
③若則程序框圖最下面的判斷框剛好執行8次程序就結束.
其中正確命題的個數為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知p:x∈A={x|x2﹣2x﹣3≤0,x∈R},q:x∈B={x|x2﹣2mx+m2﹣9≤0,x∈R,m∈R}.
(1)若A∩B=[1,3],求實數m的值;
(2)若p是q的充分條件,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com